We develop a framework for applying treewidth-based dynamic programming on graphs with "hybrid structure", i.e., with parts that may not have small treewidth but instead possess other structural properties. Informally, this is achieved by defining a refinement of treewidth which only considers parts of the graph that do not belong to a pre-specified tractable graph class. Our approach allows us to not only generalize existing fixed-parameter algorithms exploiting treewidth, but also fixed-parameter algorithms which use the size of a modulator as their parameter. As the flagship application of our framework, we obtain a parameter that combines treewidth and rank-width to obtain fixed-parameter algorithms for Chromatic Number, Hamiltonian Cycle, and Max-Cut.
@InProceedings{eiben_et_al:LIPIcs.MFCS.2019.42, author = {Eiben, Eduard and Ganian, Robert and Hamm, Thekla and Kwon, O-joung}, title = {{Measuring what Matters: A Hybrid Approach to Dynamic Programming with Treewidth}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {42:1--42:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.42}, URN = {urn:nbn:de:0030-drops-109867}, doi = {10.4230/LIPIcs.MFCS.2019.42}, annote = {Keywords: Parameterized complexity, treewidth, rank-width, fixed-parameter algorithms} }
Feedback for Dagstuhl Publishing