LIPIcs.MFCS.2019.72.pdf
- Filesize: 0.54 MB
- 9 pages
Recently, M. Kompatscher proved that for each finite supernilpotent algebra A in a congruence modular variety, there is a polynomial time algorithm to solve polynomial equations over this algebra. Let mu be the maximal arity of the fundamental operations of A, and let d := |A|^{log_2 mu + log_2 |A| + 1}. Applying a method that G. Károlyi and C. Szabó had used to solve equations over finite nilpotent rings, we show that for A, there is c in N such that a solution of every system of s equations in n variables can be found by testing at most c n^{sd} (instead of all |A|^n possible) assignments to the variables. This also yields new information on some circuit satisfiability problems.
Feedback for Dagstuhl Publishing