LIPIcs.ITP.2019.36.pdf
- Filesize: 394 kB
- 7 pages
The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) <= gamma(G) <= iota(G) <= alpha(G) <= Gamma(G) <= IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
Feedback for Dagstuhl Publishing