LIPIcs.ESA.2019.53.pdf
- Filesize: 0.54 MB
- 16 pages
The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA'05]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA'09] and it admits a QPTAS [Adamaszek and Wiese, FOCS'13; Chuzhoy and Ene, FOCS'16]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA'04]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA'15]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f'(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC'17].
Feedback for Dagstuhl Publishing