Global Curve Simplification

Authors Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, Carola Wenk



PDF
Thumbnail PDF

File

LIPIcs.ESA.2019.67.pdf
  • Filesize: 0.75 MB
  • 14 pages

Document Identifiers

Author Details

Mees van de Kerkhof
  • Utrecht University, The Netherlands
Irina Kostitsyna
  • TU Eindhoven, The Netherlands
Maarten Löffler
  • Utrecht University, The Netherlands
Majid Mirzanezhad
  • Tulane University, New Orleans, USA
Carola Wenk
  • Tulane University, New Orleans, USA

Cite AsGet BibTex

Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola Wenk. Global Curve Simplification. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 67:1-67:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ESA.2019.67

Abstract

Due to its many applications, curve simplification is a long-studied problem in computational geometry and adjacent disciplines, such as graphics, geographical information science, etc. Given a polygonal curve P with n vertices, the goal is to find another polygonal curve P' with a smaller number of vertices such that P' is sufficiently similar to P. Quality guarantees of a simplification are usually given in a local sense, bounding the distance between a shortcut and its corresponding section of the curve. In this work we aim to provide a systematic overview of curve simplification problems under global distance measures that bound the distance between P and P'. We consider six different curve distance measures: three variants of the Hausdorff distance and three variants of the Fréchet distance. And we study different restrictions on the choice of vertices for P'. We provide polynomial-time algorithms for some variants of the global curve simplification problem, and show NP-hardness for other variants. Through this systematic study we observe, for the first time, some surprising patterns, and suggest directions for future research in this important area.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Curve simplification
  • Fréchet distance
  • Hausdorff distance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming Algorithms for Line Simplification. Discrete & Computational Geometry, 43(3):497-515, 2010. Google Scholar
  2. P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near Linear time approximation algorithm for curve simplification. Algorithmica, 42(3-4):203-219, 2005. Google Scholar
  3. T. Akiyama, T. Nishizeki, and N. Saito. NP-completeness of the hamiltonian cycle problem for bipartite graphs. Journal of Information Processing, 3:73-76, 1980. Google Scholar
  4. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms, 49(2):262-–283, 2003. Google Scholar
  5. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications, 5(1-2):75-91, 1995. Google Scholar
  6. G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink. Efficiently Approximating Polygonal Paths in Three and Higher Dimensions. Algorithmica, 33(2):150-167, 2002. Google Scholar
  7. S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal chains under the discrete Fréchet distance. In Proc. Latin American Symposium on Theoretical Informatics (LATIN), Lecture Notes in Computer Science (LNCS, volume 4957), pages 630-641, 2008. Google Scholar
  8. M. Bergde Berg, M. van Kreveld, and S. Schirra. Topologically Correct Subdivision Simplification Using the Bandwidth Criterion. Cartography and Geographic Information Systems, 25(4):243-257, 1998. Google Scholar
  9. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle Tracking Data. In Proc. 31st Conference on Very Large Data Bases (VLDB), pages 853-864, 2005. Google Scholar
  10. K. Bringmann and B.R. Chaudhury. Polyline Simplification has Cubic Complexity, 2018. URL: http://arxiv.org/abs/1810.00621.
  11. L. Buzer. Optimal Simplification of Polygonal Chain for Rendering. In Proc. 23rd Annual ACM Symposium on Computational Geometry (SoCG), pages 168-174, 2007. Google Scholar
  12. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments or minimum error. International Journal of Computational Geometry & Applications, 6(1):59-77, 1996. Google Scholar
  13. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12(1):54-68, 1994. Google Scholar
  14. D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, N. Mi, and J. Snoeyink. Polygonal path simplification with angle constraints. Computational Geometry, 32(3):173-187, 2005. Google Scholar
  15. J. Czyzowicz, E. Kranakis, and J. Urrutia. A Simple Proof of the Representation of Bipartite Planar Graphs As the Contact Graphs of Orthogonal Straight Line Segments. Information Processing Letters, 66(3):125-126, 1998. Google Scholar
  16. D. H. Douglas and T. K. Peucker. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Cartographica, 10(2):112-122, 1973. Google Scholar
  17. A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Fréchet distance with shortcuts. SIAM Journal on Computing, 42:1830-1866, 2013. Google Scholar
  18. M. Godau. A natural metric for curves - computing the distance for polygonal chains and approximation algorithms. In Proc. 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science book series (LNCS, volume 480), pages 127-136, 1991. Google Scholar
  19. L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink. Approximating polygons and subdivisions with minimum-link paths. International Journal of Computational Geometry & Applications, 3(4):383-415, 1993. Google Scholar
  20. H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. Journal of Information Processing, 9(3):159-162, 1986. Google Scholar
  21. H. Imai and M. Iri. Polygonal Approximations of a Curve - Formulations and Algorithms. In Godfried T. Toussaint, editor, Computational Morphology: A Computational Geometric Approach to the Analysis of Form. North-Holland, Amsterdam, 1988. Google Scholar
  22. M. Kerkhofvan de Kerkhof, I. Kostitsyna, M. Löffler, M. Mirzanezhad, and C. Wenk. Global Curve Simplification, 2019. URL: http://arxiv.org/abs/1809.10269.
  23. I. Kostitsyna, M. Löffler, V. Polishchuk, and F. Staals. On the complexity of Minimum-Link path problems. Journal of Computational Geometry, 8(2):80-108, 2017. Google Scholar
  24. M. Kreveldvan Kreveld, M. Löffler, and L. Wiratma. On optimal polyline simplification using the Hausdorff and Fréchet distance. In Proc. 34th International Symposium on Computational Geometry (SoCG), volume 56, pages 1-14, 2018. Google Scholar
  25. W. Meulemans. Map Matching with Simplicity Constraints, 2013. URL: http://arxiv.org/abs/1306.2827.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail