Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Servedio, Rocco A.; Tan, Li-Yang https://www.dagstuhl.de/lipics License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-112605
URL:

;

Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

pdf-format:


Abstract

We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: small-depth circuits and sparse F_2 polynomials. Our main results are an epsilon-PRG for the class of size-M depth-d AC^0 circuits with seed length log(M)^{d+O(1)}* log(1/epsilon), and an epsilon-PRG for the class of S-sparse F_2 polynomials with seed length 2^{O(sqrt{log S})}* log(1/epsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds.
The key enabling ingredient in our approach is a new pseudorandom multi-switching lemma. We derandomize recently-developed multi-switching lemmas, which are powerful generalizations of Håstad's switching lemma that deal with families of depth-two circuits. Our pseudorandom multi-switching lemma - a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family - achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [Impagliazzo et al., 2012] and Håstad [Johan Håstad, 2014]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC^0 and sparse F_2 polynomials.

BibTeX - Entry

@InProceedings{servedio_et_al:LIPIcs:2019:11260,
  author =	{Rocco A. Servedio and Li-Yang Tan},
  title =	{{Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{45:1--45:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/11260},
  URN =		{urn:nbn:de:0030-drops-112605},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.45},
  annote =	{Keywords: pseudorandom generators, switching lemmas, circuit complexity, unconditional derandomization}
}

Keywords: pseudorandom generators, switching lemmas, circuit complexity, unconditional derandomization
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue date: 2019
Date of publication: 17.09.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI