LIPIcs.DISC.2019.4.pdf
- Filesize: 0.55 MB
- 14 pages
Given an undirected graph with integer edge lengths, we study the problem of approximating the distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a distributed algorithm in the CONGEST model of computation that constructs a random spanning tree with the guarantee that the expected stretch of every edge is O(log^{3} n), where n is the number of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal. In the weighted case, the run-time of our algorithm matches the currently best known bound for exact distance computations, i.e., O~ (min{sqrt{n D}, sqrt{n} D^{1 / 4} + n^{3 / 5} + D}). We stress that this is the first distributed construction of spanning trees leading to poly-logarithmic expected stretch with non-trivial running time.
Feedback for Dagstuhl Publishing