LIPIcs.ISAAC.2019.59.pdf
- Filesize: 0.56 MB
- 19 pages
For any fixed measure H that maps graphs to real numbers, the MinH problem is defined as follows: given a graph G, an integer k, and a target tau, is there a set S of k vertices that can be deleted, so that H(G - S) is at most tau? In this paper, we consider the MinH problem on trees. We call H balanced on trees if, whenever G is a tree, there is an optimal choice of S such that the components of G - S have sizes bounded by a polynomial in n / k. We show that MinH on trees is Fixed-Parameter Tractable (FPT) for parameter n / k, and furthermore, can be solved in subexponential time, and polynomial space, whenever H is additive, balanced on trees, and computable in polynomial time. A particular measure of interest is the Inverse Geodesic Length (IGL), which is used to gauge the efficiency and connectedness of a graph. It is defined as the sum of inverse distances between every two vertices: IGL(G) = sum_{{u,v} subseteq V} 1/d_G(u,v). While MinIGL is W[1]-hard for parameter treewidth, and cannot be solved in 2^{o(k + n + m)} time, even on bipartite graphs with n vertices and m edges, the complexity status of the problem remains open in the case where G is a tree. We show that IGL is balanced on trees, to give a 2^O((n log n)^(5/6)) time, polynomial space algorithm. The distance distribution of G is the sequence {a_i} describing the number of vertex pairs distance i apart in G: a_i = |{{u, v}: d_G(u, v) = i}|. Given only the distance distribution, one can easily determine graph parameters such as diameter, Wiener index, and particularly, the IGL. We show that the distance distribution of a tree can be computed in O(n log^2 n) time by reduction to polynomial multiplication. We also extend the result to graphs with small treewidth by showing that the first p values of the distance distribution can be computed in 2^(O(tw(G))) n^(1 + epsilon) sqrt(p) time, and the entire distance distribution can be computed in 2^(O(tw(G))) n^{1 + epsilon} time, when the diameter of G is O(n^epsilon') for every epsilon' > 0.
Feedback for Dagstuhl Publishing