LIPIcs.ISAAC.2019.62.pdf
- Filesize: 1.35 MB
- 15 pages
We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions S^(d-1). We show that the combinatorial complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or lines is O(min{k,n-k} n^(d-1)), which is tight for n-k = O(1). All the d-dimensional cells of the farthest Voronoi diagram are unbounded, its (d-1)-skeleton is connected, and it does not have tunnels. A d-cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of lines has exactly n^2-n three-dimensional cells, when n >= 2. The Gaussian map of the farthest Voronoi diagram of line segments or lines can be constructed in O(n^(d-1) alpha(n)) time, while if d=3, the time drops to worst-case optimal O(n^2).
Feedback for Dagstuhl Publishing