LIPIcs.ITCS.2020.38.pdf
- Filesize: 0.6 MB
- 20 pages
We consider the problem of counting all k-vertex subgraphs in an input graph, for any constant k. This problem (denoted SUB-CNT_k) has been studied extensively in both theory and practice. In a classic result, Chiba and Nishizeki (SICOMP 85) gave linear time algorithms for clique and 4-cycle counting for bounded degeneracy graphs. This is a rich class of sparse graphs that contains, for example, all minor-free families and preferential attachment graphs. The techniques from this result have inspired a number of recent practical algorithms for SUB-CNT_k. Towards a better understanding of the limits of these techniques, we ask: for what values of k can SUB_CNT_k be solved in linear time? We discover a chasm at k=6. Specifically, we prove that for k < 6, SUB_CNT_k can be solved in linear time. Assuming a standard conjecture in fine-grained complexity, we prove that for all k ⩾ 6, SUB-CNT_k cannot be solved even in near-linear time.
Feedback for Dagstuhl Publishing