LIPIcs.ITCS.2020.85.pdf
- Filesize: 478 kB
- 8 pages
A code is called a q-query locally decodable code (LDC) if there is a randomized decoding algorithm that, given an index i and a received word w close to an encoding of a message x, outputs x_i by querying only at most q coordinates of w. Understanding the tradeoffs between the dimension, length and query complexity of LDCs is a fascinating and unresolved research challenge. In particular, for 3-query binary LDC’s of dimension k and length n, the best known bounds are: 2^{k^o(1)} ≥ n ≥ Ω ̃(k²). In this work, we take a second look at binary 3-query LDCs. We investigate a class of 3-uniform hypergraphs that are equivalent to strong binary 3-query LDCs. We prove an upper bound on the number of edges in these hypergraphs, reproducing the known lower bound of Ω ̃(k²) for the length of strong 3-query LDCs. In contrast to previous work, our techniques are purely combinatorial and do not rely on a direct reduction to 2-query LDCs, opening up a potentially different approach to analyzing 3-query LDCs.
Feedback for Dagstuhl Publishing