LIPIcs.ITCS.2020.86.pdf
- Filesize: 0.63 MB
- 22 pages
Garbling schemes, also known as decomposable randomized encodings (DRE), have found many applications in cryptography. However, despite a large body of work on constructing such schemes, very little is known about their limitations. We initiate a systematic study of the DRE complexity of Boolean functions, obtaining the following main results: - Near-quadratic lower bounds. We use a classical lower bound technique of Nečiporuk [Dokl. Akad. Nauk SSSR '66] to show an Ω(n²/log n) lower bound on the size of any DRE for many explicit Boolean functions. For some natural functions, we obtain a corresponding upper bound, thus settling their DRE complexity up to polylogarithmic factors. Prior to our work, no superlinear lower bounds were known, even for non-explicit functions. - Garbling-friendly PRFs. We show that any exponentially secure PRF has Ω(n²/log n) DRE size, and present a plausible candidate for a "garbling-optimal" PRF that nearly meets this bound. This candidate establishes a barrier for super-quadratic DRE lower bounds via natural proof techniques. In contrast, we show a candidate for a weak PRF with near-exponential security and linear DRE size. Our results establish several qualitative separations, including near-quadratic separations between computational and information-theoretic DRE size of Boolean functions, and between DRE size of weak vs. strong PRFs.
Feedback for Dagstuhl Publishing