On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution

Authors Andrei Asinowski , Cyril Banderier



PDF
Thumbnail PDF

File

LIPIcs.AofA.2020.1.pdf
  • Filesize: 1.48 MB
  • 16 pages

Document Identifiers

Author Details

Andrei Asinowski
  • University of Klagenfurt, Austria
Cyril Banderier
  • Université Paris 13 (LIPN, UMR CNRS 7030), France

Acknowledgements

We thank the referees for their feedback.

Cite As Get BibTex

Andrei Asinowski and Cyril Banderier. On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.AofA.2020.1

Abstract

In this article, we analyse the joint distribution of some given set of patterns in fundamental combinatorial structures such as words and random walks (directed lattice paths on ℤ²). Our method relies on a vectorial generalization of the classical kernel method, and on a matricial generalization of the autocorrelation polynomial (thus extending the univariate case of Guibas and Odlyzko). This gives access to the multivariate generating functions, for walks, meanders (walks constrained to be above the x-axis), and excursions (meanders constrained to end on the x-axis). We then demonstrate the power of our methods by obtaining closed-form expressions for an infinite family of models, in terms of simple combinatorial quantities. Finally, we prove that the joint distribution of the patterns in walks/bridges/excursions/meanders satisfies a multivariate Gaussian limit law.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Generating functions
  • Mathematics of computing → Distribution functions
  • Theory of computation → Random walks and Markov chains
  • Theory of computation → Grammars and context-free languages
Keywords
  • Lattice path
  • Dyck path
  • Motzkin path
  • generating function
  • algebraic function
  • kernel method
  • context-free grammar
  • multivariate Gaussian distribution

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger. Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata. Algorithmica, 82(3):386-428, 2020. URL: https://doi.org/10.1007/s00453-019-00623-3.
  2. Andrei Asinowski, Cyril Banderier, and Valerie Roitner. Generating functions for lattice paths with several forbidden patterns. In Proceedings of Formal Power Series and Algebraic Combibatorics (FPSAC'20), Ramat-Gan, Israel, 2020. To appear. Google Scholar
  3. Davide Baccherini, Donatella Merlini, and Renzo Sprugnoli. Binary words excluding a pattern and proper Riordan arrays. Discrete Mathematics, 307(9):1021-1037, 2007. URL: https://doi.org/10.1016/j.disc.2006.07.023.
  4. Cyril Banderier, Olivier Bodini, Yann Ponty, and Hanane Tafat Bouzid. Biodiversity of pattern distributions in combinatorial ecosystems. In The SIAM Workshop on Analytic Algorithmics and Combinatorics (ANALCO'12), pages 107-115, Kyoto, Japan, January 2012. URL: https://doi.org/10.1137/1.9781611973020.13.
  5. Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients of algebraic functions. Combinatorics, Probability and Computing, 24(1):1-53, 2015. URL: https://doi.org/10.1017/S0963548314000728.
  6. Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Computer Science, 281(1-2):37-80, 2002. URL: https://doi.org/10.1016/S0304-3975(02)00007-5.
  7. Cyril Banderier and Bernhard Gittenberger. Analytic combinatorics of lattice paths: enumeration and asymptotics for the area. Discrete Math. Theor. Comput. Sci. Proc., AG:345-355, 2006. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. URL: https://dmtcs.episciences.org/3481.
  8. Cyril Banderier, Marie-Louise Lackner, and Michael Wallner. Latticepathology and symmetric functions. In 31th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020), volume 159 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1-2:16, 2020. URL: https://doi.org/10.4230/LIPIcs.AofA.2020.2.
  9. Cyril Banderier and Michael Wallner. The kernel method for lattice paths below a rational slope. In Lattice paths combinatorics and applications, Developments in Mathematics Series, pages 119-154. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11102-1_7.
  10. Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian. Enumeration of Łukasiewicz paths modulo some patterns. Discrete Math., 342(4):997-1005, 2019. URL: https://doi.org/10.1016/j.disc.2018.12.005.
  11. Frédérique Bassino, Julien Clément, and Pierre Nicodème. Counting occurrences for a finite set of words: Combinatorial methods. ACM Trans. Algorithms, 8(3):31:1-31:28, 2012. URL: https://doi.org/10.1145/2229163.2229175.
  12. Edward A. Bender and L. Bruce Richmond. Central and local limit theorems applied to asymptotic enumeration. II. Multivariate generating functions. J. Combin. Theory Ser. A, 34(3):255-265, 1983. URL: https://doi.org/10.1016/0097-3165(83)90062-6.
  13. Alberto Bertoni, Christian Choffrut, Massimiliano Goldwurm, and Violetta Lonati. On the number of occurrences of a symbol in words of regular languages. Theoret. Comput. Sci., 302(1-3):431-456, 2003. URL: https://doi.org/10.1016/S0304-3975(02)00892-7.
  14. Olivier Bodini and Yann Ponty. Multi-dimensional Boltzmann sampling of languages. Disc. Math. Theor. Comp. Sci., AM, January 2010. URL: https://dmtcs.episciences.org/2793.
  15. Charlotte Brennan and Simon Mavhungu. Visits to level r by Dyck paths. Fund. Inform., 117(1-4):127-145, 2012. URL: https://www.researchgate.net/publication/264970113_Visits_to_Level_r_by_Dyck_Paths.
  16. Shu-Chiuan Chang and Robert Shrock. Structural properties of Potts model partition functions and chromatic polynomials for lattice strips. Physica A: Statistical Mechanics and its Applications, 296(1-2):132-182, 2001. URL: https://doi.org/10.1016/S0378-4371(01)00150-9.
  17. Christopher Chatfield and Alexander J. Collins. Introduction to Multivariate Analysis. Chapman & Hall, London-New York, 1980. URL: https://doi.org/10.1007/978-1-4899-3184-9.
  18. Emeric Deutsch and Louis W. Shapiro. A bijection between ordered trees and 2-Motzkin paths and its many consequences. Discrete Math., 256(3):655-670, 2002. URL: https://doi.org/10.1016/S0012-365X(02)00341-2.
  19. Tomislav Doslic. Seven (lattice) paths to log-convexity. Acta Applicandae Mathematicae, 110:1373-1392, 2010. URL: https://doi.org/10.1007/s10440-009-9515-4.
  20. Michael Drmota, Bernhard Gittenberger, and Johannes F. Morgenbesser. Infinite systems of functional equations and Gaussian limiting distributions. Discrete Math. Theor. Comput. Sci. Proc., AQ, pages 453-478, 2015. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. URL: https://dmtcs.episciences.org/3012.
  21. Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh. Dyck paths with peaks avoiding or restricted to a given set. Stud. Appl. Math., 111(4):453-465, 2003. URL: https://doi.org/10.1111/1467-9590.t01-1-00042.
  22. Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009. URL: http://algo.inria.fr/flajolet/Publications/book.pdf.
  23. Zhicheng Gao and L. Bruce Richmond. Central and local limit theorems applied to asymptotic enumeration. IV: Multivariate generating functions. J. Comput. Appl. Math., 41(1-2):177-186, 1992. URL: https://doi.org/10.1016/0377-0427(92)90247-U.
  24. Ian P. Goulden and David M. Jackson. Combinatorial enumeration. Wiley, 1983. Google Scholar
  25. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-Wesley Publishing Company, 2nd edition, 1994. (1st edition: 1989). Google Scholar
  26. Torin Greenwood. Asymptotics of bivariate analytic functions with algebraic singularities. J. Comb. Theory, Ser. A, 153:1-30, 2018. URL: https://doi.org/10.1016/j.jcta.2017.06.014.
  27. Leonidas J. Guibas and Andrew M. Odlyzko. String overlaps, pattern matching, and nontransitive games. J. Combin. Theory Ser. A, 30(2):183-208, 1981. URL: https://doi.org/10.1016/0097-3165(81)90005-4.
  28. Clemens Heuberger and Sara Kropf. Higher dimensional quasi-power theorem and Berry-Esseen inequality. Monatsh. Math., 187(2):293-314, 2018. URL: https://doi.org/10.1007/s00605-018-1215-6.
  29. Hsien-Kuei Hwang. On convergence rates in the central limit theorems for combinatorial structures. European J. Combin., 19(3):329-343, 1998. URL: https://doi.org/10.1006/eujc.1997.0179.
  30. Jesper Jacobsen and Jesús Salas. Transfer matrices and partition-function zeros for antiferromagnetic potts models. IV. Chromatic polynomial with cyclic boundary conditions. Journal of Statistical Physics, 122:705-760, 2006. URL: https://doi.org/10.1007/s10955-005-8077-8.
  31. Emma Y. Jin, Jing Qin, and Christian M. Reidys. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol., 70(1):45-67, 2008. URL: https://doi.org/10.1007/s11538-007-9240-y.
  32. Yong Kong. Extension of Goulden-Jackson cluster method on pattern occurrences in random sequences and comparison with Régnier-Szpankowski method. J. Difference Equ. Appl., 11(15):1265-1271, 2005. URL: https://doi.org/10.1080/10236190500376326.
  33. Toufik Mansour and Mark Shattuck. Counting humps and peaks in generalized Motzkin paths. Discrete Appl. Math., 161(13-14):2213-2216, 2013. URL: https://doi.org/10.1016/j.dam.2013.03.007.
  34. Emanuele Munarini and Norma Zagaglia Salvi. Binary strings without zigzags. Sém. Lothar. Combin., 49:Article B49h, 15 pp., 2002. URL: https://www.mat.univie.ac.at/~slc/wpapers/s49zagaglia.pdf.
  35. John Noonan and Doron Zeilberger. The Goulden-Jackson cluster method: Extensions, applications and implementations. J. Difference Equ. Appl., 5(4-5):355-377, 1999. URL: https://doi.org/10.1080/10236199908808197.
  36. Robin Pemantle and Mark C. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. SIAM Rev., 50(2):199-272, 2008. URL: https://arxiv.org/pdf/math/0512548.
  37. Robin Pemantle and Mark C. Wilson. Analytic Combinatorics in Several Variables. Cambridge University Press, 2013. URL: https://www.math.upenn.edu/~pemantle/ACSV.pdf.
  38. Marcel-Paul Schützenberger. On the synchronizing properties of certain prefix codes. Information and Control, 7:23-36, 1964. URL: https://www.sciencedirect.com/science/article/pii/S0019995864902323/pdf.
  39. Yan Zhuang. A generalized Goulden-Jackson cluster method and lattice path enumeration. Discrete Math., 341(2):358-379, 2018. URL: https://doi.org/10.1016/j.disc.2017.09.004.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail