Two Arithmetical Sources and Their Associated Tries

Authors Valérie Berthé, Eda Cesaratto, Frédéric Paccaut, Pablo Rotondo, Martín D. Safe, Brigitte Vallée



PDF
Thumbnail PDF

File

LIPIcs.AofA.2020.4.pdf
  • Filesize: 0.56 MB
  • 19 pages

Document Identifiers

Author Details

Valérie Berthé
  • Université de Paris, CNRS, IRIF, F-75006, Paris, France
Eda Cesaratto
  • CONICET and Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Frédéric Paccaut
  • LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, Amiens, France
Pablo Rotondo
  • LITIS, Université de Rouen, France
Martín D. Safe
  • Departamento de Matemática, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
  • INMABB, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
Brigitte Vallée
  • GREYC, CNRS and Université de Caen, France

Cite As Get BibTex

Valérie Berthé, Eda Cesaratto, Frédéric Paccaut, Pablo Rotondo, Martín D. Safe, and Brigitte Vallée. Two Arithmetical Sources and Their Associated Tries. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.AofA.2020.4

Abstract

This article is devoted to the study of two arithmetical sources associated with classical partitions, that are both defined through the mediant of two fractions. The Stern-Brocot source is associated with the sequence of all the mediants, while the Sturm source only keeps mediants whose denominator is "not too large". Even though these sources are both of zero Shannon entropy, with very similar Renyi entropies, their probabilistic features yet appear to be quite different. We then study how they influence the behaviour of tries built on words they emit, and we notably focus on the trie depth. 
The paper deals with Analytic Combinatorics methods, and Dirichlet generating functions, that are usually used and studied in the case of good sources with positive entropy. To the best of our knowledge, the present study is the first one where these powerful methods are applied to a zero-entropy context. In our context, the generating function associated with each source is explicit and related to classical functions in Number Theory, as the ζ function, the double ζ function or the transfer operator associated with the Gauss map. We obtain precise asymptotic estimates for the mean value of the trie depth that prove moreover to be quite different for each source. Then, these sources provide explicit and natural instances which lead to two unusual and different trie behaviours.

Subject Classification

ACM Subject Classification
  • Theory of computation → Pattern matching
  • Theory of computation → Randomness, geometry and discrete structures
Keywords
  • Combinatorics of words
  • Information Theory
  • Probabilistic analysis
  • Analytic combinatorics
  • Dirichlet generating functions
  • Sources
  • Partitions
  • Trie structure
  • Continued fraction expansion
  • Farey map
  • Sturm words
  • Transfer operator

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. V. Baladi and B. Vallée. Euclidean algorithms are Gaussian. J. Number Theory, 110(2):331-386, 2005. URL: https://doi.org/10.1016/j.jnt.2004.08.008.
  2. V. Berthé. Fréquences des facteurs des suites sturmiennes. Theoret. Comput. Sci., 165(2):295-309, 1996. URL: https://doi.org/10.1016/0304-3975(95)00224-3.
  3. P. Cénac, B. Chauvin, F. Paccaut, and N. Pouyanne. Uncommon suffix tries. Random Structures Algorithms, 46(1):117-141, 2015. URL: https://doi.org/10.1002/rsa.20500.
  4. E. Cesaratto and B. Vallée. Gaussian distribution of trie depth for strongly tame sources. Combin. Probab. Comput., 24(1):54-103, 2015. URL: https://doi.org/10.1017/S0963548314000741.
  5. J. Clément, P. Flajolet, and B. Vallée. Dynamical sources in information theory: a general analysis of trie structures. Algorithmica, 29(1-2):307-369, 2001. URL: https://doi.org/10.1007/BF02679623.
  6. D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math. (2), 147(2):357-390, 1998. URL: https://doi.org/10.2307/121012.
  7. P. Flajolet. Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci., 215(1-2):371-381, 1999. URL: https://doi.org/10.1016/S0304-3975(98)00220-5.
  8. P. Flajolet and R. Sedgewick. Digital search trees revisited. SIAM J. Comput., 15(3):748-767, 1986. URL: https://doi.org/10.1137/0215054.
  9. P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: finite differences and Rice’s integrals. Theoret. Comput. Sci., 144(1-2):101-124, 1995. URL: https://doi.org/10.1016/0304-3975(94)00281-M.
  10. P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. URL: https://doi.org/10.1017/CBO9780511801655.
  11. P. Flajolet and B. Vallée. Continued fractions, comparison algorithms, and fine structure constants. In Constructive, experimental, and nonlinear analysis (Limoges, 1999), volume 27 of CRC Math. Model. Ser., pages 53-82. CRC, Boca Raton, FL, 2000. Google Scholar
  12. G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures: in Pascal and C. Addison-Wesley, Reading, MA, second edition, 1991. Google Scholar
  13. R. R. Hall. A note on Farey series. J. London Math. Soc. (2), 2:139-148, 1970. URL: https://doi.org/10.1112/jlms/s2-2.1.139.
  14. S. Kanemitsu, R. Sitaramachandra Rao, and A. Siva Rama Sarma. Some sums involving Farey fractions. I. J. Math. Soc. Japan, 34(1):125-142, 1982. URL: https://doi.org/10.2969/jmsj/03410125.
  15. A. Ya. Khinchin. Continued fractions. The University of Chicago Press, Chicago, Ill.-London, 1964. Google Scholar
  16. N. Moshchevitin and A. Zhigljavsky. Entropies of the partitions of the unit interval generated by the Farey tree. Acta Arith., 115(1):47-58, 2004. URL: https://doi.org/10.4064/aa115-1-4.
  17. N. E. Nörlund. Lecons sur les équations linéaires aux différences finies. Collection de monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929. Google Scholar
  18. N. E. Nörlund. Vorlesungen über Differenzenrechnung. Chelsea Publishing Company, New York, 1954. Google Scholar
  19. T. Prellberg and J. Slawny. Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Statist. Phys., 66(1-2):503-514, 1992. URL: https://doi.org/10.1007/BF01060077.
  20. W. Szpankowski. Average case analysis of algorithms on sequences. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2001. URL: https://doi.org/10.1002/9781118032770.
  21. G. Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres, volume 1 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, second edition, 1995. Google Scholar
  22. B. Vallée. Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss. Acta Arith., 81(2):101-144, 1997. URL: https://doi.org/10.4064/aa-81-2-101-144.
  23. B. Vallée. Dynamical sources in information theory: fundamental intervals and word prefixes. Algorithmica, 29(1-2):262-306, 2001. URL: https://doi.org/10.1007/BF02679622.
  24. B. Vallée. The depoissonisation quintet: Rice-Poisson-Mellin-Newton-Laplace. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, volume 110 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 35, 20. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018. Long version http://arxiv.org/pdf/1802.04988. URL: https://doi.org/10.4230/LIPIcs.AofA.2018.35.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail