LIPIcs.AofA.2020.5.pdf
- Filesize: 0.49 MB
- 10 pages
The k-cut number of rooted graphs was introduced by Cai et al. [Cai and Holmgren, 2019] as a generalization of the classical cutting model by Meir and Moon [Meir and Moon, 1970]. In this paper, we show that all moments of the k-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson [Janson, 2006].
Feedback for Dagstuhl Publishing