Polyharmonic Functions And Random Processes in Cones

Authors François Chapon, Éric Fusy, Kilian Raschel



PDF
Thumbnail PDF

File

LIPIcs.AofA.2020.9.pdf
  • Filesize: 499 kB
  • 19 pages

Document Identifiers

Author Details

François Chapon
  • Université de Toulouse, Institut de Mathématiques de Toulouse, UMR CNRS 5219, 31062 Toulouse Cedex 9, France
Éric Fusy
  • CNRS, LIX, UMR CNRS 7161, École Polytechnique, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
Kilian Raschel
  • CNRS, Institut Denis Poisson, UMR CNRS 7013, Université de Tours et Université d'Orléans, Parc de Grandmont, 37200 Tours, France

Acknowledgements

We would like to thank Cédric Lecouvey, Steve Melczer, Pierre Tarrago and Wolfgang Woess for very interesting discussions. This project has started in July 2019, when two authors were invited at the Institute of Mathematical Statistics of Münster University. The institute, and in particular Gerold Alsmeyer, is greatly acknowledged for hospitality. The first author also acknowledges the Institut Denis Poisson for the warm hospitality during his stay at the Université de Tours, where part of this work has been pursued. Finally, we thank the three anonymous referees for useful comments.

Cite As Get BibTex

François Chapon, Éric Fusy, and Kilian Raschel. Polyharmonic Functions And Random Processes in Cones. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.AofA.2020.9

Abstract

We investigate polyharmonic functions associated to Brownian motions and random walks in cones. These are functions which cancel some power of the usual Laplacian in the continuous setting and of the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk enumeration problems. We provide a method to construct general polyharmonic functions through Laplace transforms and generating functions in the continuous and discrete cases, respectively. This is done by using a functional equation approach.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Markov processes
  • Theory of computation → Random walks and Markov chains
  • Mathematics of computing → Enumeration
  • Mathematics of computing → Generating functions
Keywords
  • Brownian motion in cones
  • Heat kernel
  • Random walks in cones
  • Harmonic functions
  • Polyharmonic functions
  • Complete asymptotic expansions
  • Functional equations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. Almansi. Sull'integrazione dell'equazione differenziale Delta^2n=0. Annali di Mat. (3), 2:1-51, 1899. Google Scholar
  2. Nachman Aronszajn, Thomas M. Creese, and Leonard J. Lipkin. Polyharmonic functions. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1983. Notes taken by Eberhard Gerlach, Oxford Science Publications. Google Scholar
  3. Rodrigo Ba~nuelos and Robert G. Smits. Brownian motion in cones. Probab. Theory Related Fields, 108(3):299-319, 1997. URL: https://doi.org/10.1007/s004400050111.
  4. Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Computer Science, 281(1-2):37-80, 2002. Google Scholar
  5. Olivier Bernardi and Mireille Bousquet-Mélou. Counting colored planar maps: algebraicity results. J. Combin. Theory Ser. B, 101(5):315-377, 2011. URL: https://doi.org/10.1016/j.jctb.2011.02.003.
  6. Olivier Bernardi, Mireille Bousquet-Mélou, and Kilian Raschel. Counting quadrant walks via Tutte’s invariant method. Preprint arXiv, 2017. URL: http://arxiv.org/abs/1708.08215.
  7. Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer. Counting walks with large steps in an orthant. Preprint arXiv, 2018. URL: http://arxiv.org/abs/1806.00968.
  8. Alin Bostan, Kilian Raschel, and Bruno Salvy. Non-D-finite excursions in the quarter plane. J. Combin. Theory Ser. A, 121:45-63, 2014. URL: https://doi.org/10.1016/j.jcta.2013.09.005.
  9. Mireille Bousquet-Mélou. Counting walks in the quarter plane. In Mathematics and computer science, II (Versailles, 2002), Trends Math., pages 49-67. Birkhäuser, Basel, 2002. Google Scholar
  10. Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. In Algorithmic probability and combinatorics, volume 520 of Contemp. Math., pages 1-39. Amer. Math. Soc., Providence, RI, 2010. URL: https://doi.org/10.1090/conm/520/10252.
  11. Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk. Google Scholar
  12. Joel M. Cohen, Flavia Colonna, Kohur Gowrisankaran, and David Singman. Polyharmonic functions on trees. Amer. J. Math., 124(5):999-1043, 2002. URL: http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.5cohen.pdf.
  13. Louis Comtet. Advanced combinatorics. The art of finite and infinite expansions. Dordrecht, Holland - Boston, U.S.A.: D. Reidel Publishing Company. X, 343 p. Dfl. 65.00., 1974. Google Scholar
  14. J. Courtiel, S. Melczer, M. Mishna, and K. Raschel. Weighted lattice walks and universality classes. J. Combin. Theory Ser. A, 152:255-302, 2017. URL: https://doi.org/10.1016/j.jcta.2017.06.008.
  15. Denis Denisov and Vitali Wachtel. Random walks in cones. Ann. Probab., 43(3):992-1044, 2015. URL: https://doi.org/10.1214/13-AOP867.
  16. Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in the quarter plane, volume 40 of Probability Theory and Stochastic Modelling. Springer, Cham, second edition, 2017. Algebraic methods, boundary value problems, applications to queueing systems and analytic combinatorics. URL: https://doi.org/10.1007/978-3-319-50930-3.
  17. Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. URL: https://doi.org/10.1017/CBO9780511801655.
  18. Thomas Hirschler and Wolfgang Woess. Polyharmonic functions for finite graphs and Markov chains. Preprint arXiv, 2019. Frontiers in Analysis and Probability: in the Spirit of the Strasbourg-Zürich Meetings, Springer (to appear). URL: http://arxiv.org/abs/1901.08376.
  19. Stephen Melczer and Mark C. Wilson. Higher dimensional lattice walks: connecting combinatorial and analytic behavior. SIAM J. Discrete Math., 33(4):2140-2174, 2019. URL: https://doi.org/10.1137/18M1220856.
  20. Kilian Raschel. Random walks in the quarter plane, discrete harmonic functions and conformal mappings. Stochastic Process. Appl., 124(10):3147-3178, 2014. With an appendix by Sandro Franceschi. URL: https://doi.org/10.1016/j.spa.2014.04.013.
  21. Ecaterina Sava-Huss and Wolfgang Woess. Boundary behaviour of λ-polyharmonic functions on regular trees. Preprint arXiv, 2019. URL: http://arxiv.org/abs/1904.10290.
  22. F. Spitzer. Principles of Random Walk. 2nd ed, Springer, New York, 1976. Google Scholar
  23. W. T. Tutte. Chromatic sums revisited. Aequationes Math., 50(1-2):95-134, 1995. URL: https://doi.org/10.1007/BF01831115.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail