LIPIcs.AofA.2020.11.pdf
- Filesize: 0.6 MB
- 13 pages
We show that the number of minimal deterministic finite automata with n+1 states recognizing a finite binary language grows asymptotically for n → ∞ like Θ(n! 8ⁿ e^{3 a₁ n^{1/3}} n^{7/8}), where a₁ ≈ -2.338 is the largest root of the Airy function. For this purpose, we use a new asymptotic enumeration method proposed by the same authors in a recent preprint (2019). We first derive a new two-parameter recurrence relation for the number of such automata up to a given size. Using this result, we prove by induction tight bounds that are sufficiently accurate for large n to determine the asymptotic form using adapted Netwon polygons.
Feedback for Dagstuhl Publishing