LIPIcs.AofA.2020.17.pdf
- Filesize: 476 kB
- 15 pages
We study here the so called subsequence pattern matching also known as hidden pattern matching in which one searches for a given pattern w of length m as a subsequence in a random text of length n. The quantity of interest is the number of occurrences of w as a subsequence (i.e., occurring in not necessarily consecutive text locations). This problem finds many applications from intrusion detection, to trace reconstruction, to deletion channel, and to DNA-based storage systems. In all of these applications, the pattern w is of variable length. To the best of our knowledge this problem was only tackled for a fixed length m=O(1) [P. Flajolet et al., 2006]. In our main result Theorem 5 we prove that for m=o(n^{1/3}) the number of subsequence occurrences is normally distributed. In addition, in Theorem 6 we show that under some constraints on the structure of w the asymptotic normality can be extended to m=o(√n). For a special pattern w consisting of the same symbol, we indicate that for m=o(n) the distribution of number of subsequences is either asymptotically normal or asymptotically log normal. We conjecture that this dichotomy is true for all patterns. We use Hoeffding’s projection method for U-statistics to prove our findings.
Feedback for Dagstuhl Publishing