Block Statistics in Subcritical Graph Classes

Authors Dimbinaina Ralaivaosaona, Clément Requilé, Stephan Wagner



PDF
Thumbnail PDF

File

LIPIcs.AofA.2020.24.pdf
  • Filesize: 409 kB
  • 14 pages

Document Identifiers

Author Details

Dimbinaina Ralaivaosaona
  • Stellenbosch University, South Africa
Clément Requilé
  • Technische Universität Wien, Austria
Stephan Wagner
  • Uppsala University, Sweden
  • Stellenbosch University, South Africa

Cite AsGet BibTex

Dimbinaina Ralaivaosaona, Clément Requilé, and Stephan Wagner. Block Statistics in Subcritical Graph Classes. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.AofA.2020.24

Abstract

We study block statistics in subcritical graph classes; these are statistics that can be defined as the sum of a certain weight function over all blocks. Examples include the number of edges, the number of blocks, and the logarithm of the number of spanning trees. The main result of this paper is a central limit theorem for statistics of this kind under fairly mild technical assumptions.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Random graphs
  • Mathematics of computing → Generating functions
Keywords
  • subcritical graph class
  • block statistic
  • number of blocks
  • number of edges
  • number of spanning trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manuel Bodirsky, Omer Giménez, Mihyun Kang, and Marc Noy. Enumeration and limit laws for series-parallel graphs. European Journal of Combinatorics, 28(8):2091-2105, 2007. Google Scholar
  2. Guillaume Chapuy, Éric Fusy, Mihyun Kang, and Bilyana Shoilekova. A complete grammar for decomposing a family of graphs into 3-connected components. The Electronic Journal of Combinatorics, 15(R148), 2008. Google Scholar
  3. Michael Drmota. Random Trees. SpringerWienNewYork, Vienna, 2009. Google Scholar
  4. Michael Drmota, Éric Fusy, Mihyun Kang, Veronika Kraus, and Juanjo Rué. Asymptotic study of subcritical graph classes. SIAM Journal on Discrete Mathematics, 25(4):1615-1651, 2011. Google Scholar
  5. Michael Drmota, Lander Ramos, Clément Requilé, and Juanjo Rué. Maximal independent sets and maximal matchings in series-parallel and related graph classes. The Electronic Journal of Combinatorics, 27(P1.5), 2020. Google Scholar
  6. Michael Drmota, Lander Ramos, and Juanjo Rué. Subgraph statistics in subcritical graph classes. Random Structures & Algorithms, 51(4):631-673, 2017. Google Scholar
  7. Julia Ehrenmüller and Juanjo Rué. Spanning trees in random series-parallel graphs. Advances in Applied Mathematics, 75:18-55, 2016. Google Scholar
  8. Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009. Google Scholar
  9. Agelos Georgakopoulos and Stephan Wagner. Subcritical graph classes containing all planar graphs. Combinatorics, Probability and Computing, 27(5):763-773, 2018. Google Scholar
  10. Hsien-Kuei Hwang. On convergence rates in the central limit theorems for combinatorial structures. European Journal of Combinatorics, 19(3):329-343, 1998. Google Scholar
  11. Olav Kallenberg. Foundations of Modern Probability. Probability and its Applications. Springer-Verlag, New York, second edition, 2002. Google Scholar
  12. Konstantinos Panagiotou, Benedikt Stufler, and Kerstin Weller. Scaling limits of random graphs from subcritical graph classes. The Annals of Probability, 44(5):3291-3334, 2016. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail