The Reeb Graph Edit Distance Is Universal

Authors Ulrich Bauer , Claudia Landi , Facundo Mémoli



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.15.pdf
  • Filesize: 470 kB
  • 16 pages

Document Identifiers

Author Details

Ulrich Bauer
  • Department of Mathematics, Technical University of Munich (TUM), Germany
Claudia Landi
  • Dipartimento di Scienze e Metodi dell'Ingegneria, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy
Facundo Mémoli
  • Department of Mathematics, The Ohio State University, Columbus, OH, USA

Acknowledgements

We thank Barbara Di Fabio and Yusu Wang for valuable discussions.

Cite As Get BibTex

Ulrich Bauer, Claudia Landi, and Facundo Mémoli. The Reeb Graph Edit Distance Is Universal. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.SoCG.2020.15

Abstract

We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Mathematics of computing → Algebraic topology
Keywords
  • Reeb graphs
  • topological descriptors
  • edit distance
  • interleaving distance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ulrich Bauer, Barbara Di Fabio, and Claudia Landi. An Edit Distance for Reeb Graphs. In Eurographics Workshop on 3D Object Retrieval. The Eurographics Association, 2016. URL: https://doi.org/10.2312/3dor.20161084.
  2. Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SoCG'14, New York, NY, USA, 2014. ACM. URL: https://doi.org/10.1145/2582112.2582169.
  3. Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. In 31st International Symposium on Computational Geometry (SoCG 2015), Leibniz International Proceedings in Informatics (LIPIcs), pages 461-475, Dagstuhl, Germany, 2015. URL: https://doi.org/10.4230/LIPIcs.SOCG.2015.461.
  4. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete Comput. Geom., 37(1):103-120, 2007. URL: https://doi.org/10.1007/s00454-006-1276-5.
  5. Michele d'Amico, Patrizio Frosini, and Claudia Landi. Natural pseudo-distance and optimal matching between reduced size functions. Acta Applicandae Mathematicae, 109(2):527-554, 2010. URL: https://doi.org/10.1007/s10440-008-9332-1.
  6. Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete & Computational Geometry, 55(4):854-906, 2016. URL: https://doi.org/10.1007/s00454-016-9763-9.
  7. Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces. Discrete & Computational Geometry, 55(2):423-461, 2016. URL: https://doi.org/10.1007/s00454-016-9758-6.
  8. Pietro Donatini and Patrizio Frosini. Natural pseudodistances between closed manifolds. Forum Math., 16(5):695-715, 2004. URL: https://doi.org/10.1515/form.2004.032.
  9. Barbara Di Fabio and Claudia Landi. Reeb graphs of curves are stable under function perturbations. Mathematical Methods in the Applied Sciences, 35(12):1456-1471, 2012. URL: https://doi.org/10.1002/mma.2533.
  10. Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH '01, pages 203-212. ACM Press, 2001. URL: https://doi.org/10.1145/383259.383282.
  11. Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613-650, 2015. URL: https://doi.org/10.1007/s10208-015-9255-y.
  12. Facundo Mémoli. A distance between filtered spaces via tripods. Preprint, 2017. URL: http://arxiv.org/abs/1704.03965.
  13. Georges Reeb. Sur les points singuliers d'une forme de Pfaff complétement intégrable ou d'une fonction numérique. Comptes Rendus de L'Académie des Sciences, 222:847-849, 1946. Google Scholar
  14. Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 11(6):44-51, 1991. URL: https://doi.org/10.1109/38.103393.
  15. Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In Eurographics Symposium on Point-Based Graphics. The Eurographics Association, 2007. URL: https://doi.org/10.2312/SPBG/SPBG07/091-100.
  16. John R. Stallings. Brick’s Quasi Simple Filtrations and 3-Manifolds, volume 188 of London Mathematical Society Lecture Note Series, page 188–203. Cambridge University Press, 1993. URL: https://doi.org/10.1017/CBO9780511661860.017.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail