LIPIcs.FSCD.2020.16.pdf
- Filesize: 0.58 MB
- 18 pages
In this paper, we study the bicategory of profunctors with the free finite coproduct pseudo-comonad and show that it constitutes a model of linear logic that generalizes the Scott model. We formalize the connection between the two models as a change of base for enriched categories which induces a pseudo-functor that preserves all the linear logic structure. We prove that morphisms in the co-Kleisli bicategory correspond to the concept of strongly finitary functors (sifted colimits preserving functors) between presheaf categories. We further show that this model provides solutions of recursive type equations which provides 2-dimensional models of the pure lambda calculus and we also exhibit a fixed point operator on terms.
Feedback for Dagstuhl Publishing