Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Bénéteau, Laurine; Chalopin, Jérémie; Chepoi, Victor; Vaxès, Yann https://www.dagstuhl.de/lipics License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-124171
URL:

; ; ;

Medians in Median Graphs and Their Cube Complexes in Linear Time

pdf-format:


Abstract

The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the 𝓁₁-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of G are also adjacent.

BibTeX - Entry

@InProceedings{bnteau_et_al:LIPIcs:2020:12417,
  author =	{Laurine B{\'e}n{\'e}teau and J{\'e}r{\'e}mie Chalopin and Victor Chepoi and Yann Vax{\`e}s},
  title =	{{Medians in Median Graphs and Their Cube Complexes in Linear Time}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Artur Czumaj and Anuj Dawar and Emanuela Merelli},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12417},
  URN =		{urn:nbn:de:0030-drops-124171},
  doi =		{10.4230/LIPIcs.ICALP.2020.10},
  annote =	{Keywords: Median Graph, CAT(0) Cube Complex, Median Problem, Linear Time Algorithm, LexBFS}
}

Keywords: Median Graph, CAT(0) Cube Complex, Median Problem, Linear Time Algorithm, LexBFS
Seminar: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Issue date: 2020
Date of publication: 29.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI