 Creative Commons Attribution 3.0 Unported license
                
    Creative Commons Attribution 3.0 Unported license
 
    A partition 𝒫 of a weighted graph G is (σ,τ,Δ)-sparse if every cluster has diameter at most Δ, and every ball of radius Δ/σ intersects at most τ clusters. Similarly, 𝒫 is (σ,τ,Δ)-scattering if instead for balls we require that every shortest path of length at most Δ/σ intersects at most τ clusters. Given a graph G that admits a (σ,τ,Δ)-sparse partition for all Δ > 0, Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch O(τσ²log_τ n). Given a graph G that admits a (σ,τ,Δ)-scattering partition for all Δ > 0, we construct a solution for the Steiner Point Removal problem with stretch O(τ³σ³). We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.
@InProceedings{filtser:LIPIcs.ICALP.2020.47,
  author =	{Filtser, Arnold},
  title =	{{Scattering and Sparse Partitions, and Their Applications}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{47:1--47:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.47},
  URN =		{urn:nbn:de:0030-drops-124547},
  doi =		{10.4230/LIPIcs.ICALP.2020.47},
  annote =	{Keywords: Scattering partitions, sparse partitions, sparse covers, Steiner point removal, Universal Steiner tree, Universal TSP}
}