Scattering and Sparse Partitions, and Their Applications

Author Arnold Filtser



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2020.47.pdf
  • Filesize: 0.71 MB
  • 20 pages

Document Identifiers

Author Details

Arnold Filtser
  • Columbia University, United States, New York, NY, USA

Acknowledgements

The author would like to thank Alexandr Andoni, Robert Krauthgamer, Jason Li, Ofer Neiman, Anastasios Sidiropoulos, and Ohad Trabelsi for helpful discussions.

Cite As Get BibTex

Arnold Filtser. Scattering and Sparse Partitions, and Their Applications. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 47:1-47:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.ICALP.2020.47

Abstract

A partition 𝒫 of a weighted graph G is (σ,τ,Δ)-sparse if every cluster has diameter at most Δ, and every ball of radius Δ/σ intersects at most τ clusters. Similarly, 𝒫 is (σ,τ,Δ)-scattering if instead for balls we require that every shortest path of length at most Δ/σ intersects at most τ clusters. Given a graph G that admits a (σ,τ,Δ)-sparse partition for all Δ > 0, Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch O(τσ²log_τ n). Given a graph G that admits a (σ,τ,Δ)-scattering partition for all Δ > 0, we construct a solution for the Steiner Point Removal problem with stretch O(τ³σ³). We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • Scattering partitions
  • sparse partitions
  • sparse covers
  • Steiner point removal
  • Universal Steiner tree
  • Universal TSP

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances in Mathematics, 228(6):3026-3126, 2011. URL: https://doi.org/10.1016/j.aim.2011.08.003.
  2. Ittai Abraham, Arnold Filtser, Anupam Gupta, and Ofer Neiman. Metric embedding via shortest path decompositions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 952-963, 2018. Full version: https://arxiv.org/abs/1708.04073. URL: https://doi.org/10.1145/3188745.3188808.
  3. Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi. Routing in networks with low doubling dimension. In 26th IEEE International Conference on Distributed Computing Systems (ICDCS 2006), 4-7 July 2006, Lisboa, Portugal, page 75, 2006. URL: https://doi.org/10.1109/ICDCS.2006.72.
  4. Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM J. Comput., 48(3):1120-1145, 2019. URL: https://doi.org/10.1137/17M1112406.
  5. Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, and Udi Wieder. Strong-diameter decompositions of minor free graphs. Theory Comput. Syst., 47(4):837-855, 2010. URL: https://doi.org/10.1007/s00224-010-9283-6.
  6. Noga Alon and Yossi Azar. On-line steiner trees in the euclidean plane. In Proceedings of the Eighth Annual Symposium on Computational Geometry, Berlin, Germany, June 10-12, 1992, pages 337-343, 1992. URL: https://doi.org/10.1145/142675.142744.
  7. Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1 + ε)-approximate flow sparsifiers. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 279-293, 2014. URL: https://doi.org/10.1137/1.9781611973402.20.
  8. Baruch Awerbuch and David Peleg. Sparse partitions (extended abstract). In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 503-513, 1990. URL: https://doi.org/10.1109/FSCS.1990.89571.
  9. Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996, pages 184-193, 1996. URL: https://doi.org/10.1109/SFCS.1996.548477.
  10. Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. J. Comput. Syst. Sci., 105:116-129, 2019. URL: https://doi.org/10.1016/j.jcss.2019.04.006.
  11. A. Basu and A. Gupta. Steiner point removal in graph metrics. Unpublished Manuscript, available from http://www.ams.jhu.edu/~abasu9/papers/SPR.pdf, 2008. URL: http://www.ams.jhu.edu/~abasu9/papers/SPR.pdf.
  12. Costas Busch, Chinmoy Dutta, Jaikumar Radhakrishnan, Rajmohan Rajaraman, and Srinivasagopalan Srivathsan. Split and join: Strong partitions and universal steiner trees for graphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 81-90, 2012. URL: https://doi.org/10.1109/FOCS.2012.45.
  13. Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Sparse covers for planar graphs and graphs that exclude a fixed minor. Algorithmica, 69(3):658-684, 2014. URL: https://doi.org/10.1007/s00453-013-9757-4.
  14. T.-H. Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. A tight lower bound for the steiner point removal problem on trees. In Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, and 10th International Conference on Randomization and Computation, APPROX'06/RANDOM'06, pages 70-81, Berlin, Heidelberg, 2006. Springer-Verlag. URL: https://doi.org/10.1007/11830924_9.
  15. Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and abstract rounding algorithms. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 265-274, 2010. URL: https://doi.org/10.1109/FOCS.2010.32.
  16. Yun Kuen Cheung. Steiner point removal - distant terminals don't (really) bother. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1353-1360, 2018. URL: https://doi.org/10.1137/1.9781611975031.89.
  17. Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph minors for preserving terminal distances approximately - lower and upper bounds. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 131:1-131:14, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.131.
  18. George Christodoulou and Alkmini Sgouritsa. An improved upper bound for the universal TSP on the grid. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1006-1021, 2017. URL: https://doi.org/10.1137/1.9781611974782.64.
  19. Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 673-688, 2012. URL: https://doi.org/10.1145/2213977.2214039.
  20. Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math., 20(2):463-501, 2006. URL: https://doi.org/10.1137/050630696.
  21. Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci., 697:1-36, 2017. URL: https://doi.org/10.1016/j.tcs.2017.06.021.
  22. Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding. SIAM J. Comput., 47(3):829-858, 2018. URL: https://doi.org/10.1137/17M1118749.
  23. Michael Elkin and Ofer Neiman. Near isometric terminal embeddings for doubling metrics. In 34th International Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary, pages 36:1-36:15, 2018. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.36.
  24. Michael Elkin and Ofer Neiman. Lossless prioritized embeddings. CoRR, abs/1907.06983, 2019. To appear in SODA2020. URL: http://arxiv.org/abs/1907.06983.
  25. Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old techniques. SIAM J. Comput., 43(4):1239-1262, 2014. URL: https://doi.org/10.1137/130908440.
  26. Jittat Fakcharoenphol and Kunal Talwar. An improved decomposition theorem for graphs excluding a fixed minor. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, 6th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, pages 36-46, 2003. URL: https://doi.org/10.1007/978-3-540-45198-3_4.
  27. Arnold Filtser. Steiner point removal with distortion O(log k). In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1361-1373, 2018. URL: https://doi.org/10.1137/1.9781611975031.90.
  28. Arnold Filtser. On strong diameter padded decompositions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA., pages 6:1-6:21, 2019. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6.
  29. Arnold Filtser. Steiner point removal with distortion O(log k) using the relaxed-voronoi algorithm. SIAM J. Comput., 48(2):249-278, 2019. URL: https://doi.org/10.1137/18M1184400.
  30. Arnold Filtser. A face cover perspective to 𝓁₁ embeddings of planar graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1945-1954, 2020. URL: https://doi.org/10.1137/1.9781611975994.120.
  31. Arnold Filtser. Scattering and sparse partitions, and their applications. CoRR, abs/2001.04447, 2020. URL: http://arxiv.org/abs/2001.04447.
  32. Arnold Filtser, Lee-Ad Gottlieb, and Robert Krauthgamer. Labelings vs. embeddings: On distributed representations of distances. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1063-1075, 2020. URL: https://doi.org/10.1137/1.9781611975994.65.
  33. Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. Relaxed voronoi: A simple framework for terminal-clustering problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 10:1-10:14, 2019. URL: https://doi.org/10.4230/OASIcs.SOSA.2019.10.
  34. Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decompositions. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, pages 29:1-29:15, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.29.
  35. Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees for vertex sparsification in planar graphs. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 44:1-44:14, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.44.
  36. Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Improved lower bounds for the universal and a priori. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 178-191, 2010. URL: https://doi.org/10.1007/978-3-642-15369-3_14.
  37. Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-competitive steiner tree online. SIAM J. Comput., 45(1):1-28, 2016. URL: https://doi.org/10.1137/140955276.
  38. Anupam Gupta. Steiner points in tree metrics don't (really) help. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '01, pages 220-227, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=365411.365448.
  39. Anupam Gupta, Mohammad Taghi Hajiaghayi, and Harald Räcke. Oblivious network design. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 970-979, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109665.
  40. Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 534-543, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238226.
  41. Anupam Gupta, Viswanath Nagarajan, and R. Ravi. An improved approximation algorithm for requirement cut. Oper. Res. Lett., 38(4):322-325, 2010. URL: https://doi.org/10.1016/j.orl.2010.02.009.
  42. Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Frank Thomson Leighton. Improved lower and upper bounds for universal TSP in planar metrics. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 649-658, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109628.
  43. Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete Math., 4(3):369-384, 1991. URL: https://doi.org/10.1137/0404033.
  44. Patrick Jaillet. A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Operations Research, 36(6):929-936, 1988. URL: https://doi.org/10.1287/opre.36.6.929.
  45. Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal approximations for tsp, steiner tree, and set cover. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 386-395, 2005. URL: https://doi.org/10.1145/1060590.1060649.
  46. Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. Cutting corners cheaply, or how to remove steiner points. SIAM J. Comput., 44(4):975-995, 2015. URL: https://doi.org/10.1137/140951382.
  47. Telikepalli Kavitha and Nithin M. Varma. Small stretch pairwise spanners. In Proceedings of the 40th International Conference on Automata, Languages, and Programming - Volume Part I, ICALP'13, pages 601-612, Berlin, Heidelberg, 2013. Springer-Verlag. URL: https://doi.org/10.1007/978-3-642-39206-1_51.
  48. Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and multicommodity flow. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 682-690, 1993. URL: https://doi.org/10.1145/167088.167261.
  49. Robert Krauthgamer, James R. Lee, and Havana Rika. Flow-cut gaps and face covers in planar graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 525-534, 2019. URL: https://doi.org/10.1137/1.9781611975482.33.
  50. Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. Preserving terminal distances using minors. SIAM J. Discrete Math., 28(1):127-141, 2014. URL: https://doi.org/10.1137/120888843.
  51. Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations of terminal cuts. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1789-1799, 2013. URL: https://doi.org/10.1137/1.9781611973105.128.
  52. Robert Krauthgamer and Inbal Rika. Refined vertex sparsifiers of planar graphs. CoRR, abs/1702.05951, 2017. URL: http://arxiv.org/abs/1702.05951.
  53. Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and lipschitz extensions. International Mathematics Research Notices, 2005(58):3625-3655, 2005. URL: https://doi.org/10.1155/IMRN.2005.3625.
  54. Frank Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 47-56, 2010. URL: https://doi.org/10.1145/1806689.1806698.
  55. Konstantin Makarychev and Yury Makarychev. Metric extension operators, vertex sparsifiers and lipschitz extendability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 255-264, 2010. URL: https://doi.org/10.1109/FOCS.2010.31.
  56. Ankur Moitra. Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 3-12, 2009. URL: https://doi.org/10.1109/FOCS.2009.28.
  57. Loren K. Platzman and John J. Bartholdi, III. Spacefilling curves and the planar travelling salesman problem. J. ACM, 36(4):719-737, October 1989. URL: https://doi.org/10.1145/76359.76361.
  58. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles and spanners. In Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages 261-272, 2005. URL: https://doi.org/10.1007/11523468_22.
  59. Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori TSP. Oper. Res. Lett., 36(1):1-3, 2008. URL: https://doi.org/10.1016/j.orl.2007.04.009.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail