LIPIcs.ICALP.2020.63.pdf
- Filesize: 441 kB
- 14 pages
We prove that both Polynomial Calculus and Sums-of-Squares proof systems admit a strong form of feasible interpolation property for sets of polynomial equality constraints. Precisely, given two sets P(x,z) and Q(y,z) of equality constraints, a refutation Π of P(x,z) ∪ Q(y,z), and any assignment a to the variables z, one can find a refutation of P(x,a) or a refutation of Q(y,a) in time polynomial in the length of the bit-string encoding the refutation Π. For Sums-of-Squares we rely on the use of Boolean axioms, but for Polynomial Calculus we do not assume their presence.
Feedback for Dagstuhl Publishing