LIPIcs.ICALP.2020.101.pdf
- Filesize: 0.51 MB
- 14 pages
We show the existence of an exact mimicking network of k^O(log k) edges for minimum multicuts over a set of terminals in an undirected graph, where k is the total capacity of the terminals. Furthermore, if Small Set Expansion has an approximation algorithm with a ratio slightly better than Θ(log n), then a mimicking network of quasipolynomial size can be computed in polynomial time. As a consequence of the latter, several problems would have quasipolynomial kernels, including Edge Multiway Cut, Group Feedback Edge Set for an arbitrary group, 0-Extension for integer-weighted metrics, and Edge Multicut parameterized by the solution and the number of cut requests. The result works via a combination of the matroid-based irrelevant edge approach used in the kernel for s-Multiway Cut with a recursive decomposition and sparsification of the graph along sparse cuts. The main technical contribution is a matroid-based marking procedure that we can show will mark all non-irrelevant edges, assuming that the graph is sufficiently densely connected. The only part of the result that is not currently constructive and polynomial-time computable is the detection of such sparse cuts. This is the first progress on the kernelization of Multiway Cut problems since the kernel for s-Multiway Cut for constant value of s (Kratsch and Wahlström, FOCS 2012).
Feedback for Dagstuhl Publishing