LIPIcs.APPROX-RANDOM.2020.20.pdf
- Filesize: 0.51 MB
- 15 pages
A community of n individuals splits into two camps, Red and Blue. The individuals are connected by a social network, which influences their colors. Everyday, each person changes his/her color according to the majority of his/her neighbors. Red (Blue) wins if everyone in the community becomes Red (Blue) at some point. We study this process when the underlying network is the random Erdos-Renyi graph G(n, p). With a balanced initial state (n/2 persons in each camp), it is clear that each color wins with the same probability. Our study reveals that for any constants p and ε, there is a constant c such that if one camp has n/2 + c individuals at the initial state, then it wins with probability at least 1 - ε. The surprising fact here is that c does not depend on n, the population of the community. When p = 1/2 and ε = .1, one can set c = 6, meaning one camp has n/2 + 6 members initially. In other words, it takes only 6 extra people to win an election with overwhelming odds. We also generalize the result to p = p_n = o(1) in a separate paper.
Feedback for Dagstuhl Publishing