LIPIcs.APPROX-RANDOM.2020.45.pdf
- Filesize: 483 kB
- 15 pages
We study the problem of finding a mapping f from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points (u,v,w) asserts that |f(u)-f(v)| < |f(u)-f(w)|. We present an approximation algorithm for the dense case of this problem. Given an instance that admits a solution that satisfies (1-ε)-fraction of all constraints, our algorithm computes a solution that satisfies (1-O(ε^{1/8}))-fraction of all constraints, in time O(n⁷) + (1/ε)^{O(1/ε^{1/8})} n.
Feedback for Dagstuhl Publishing