,
Zoltán Szigeti,
Lu Wang
Creative Commons Attribution 3.0 Unported license
Given a connected undirected graph G ̅ on n vertices, and non-negative edge costs c, the 2ECM problem is that of finding a 2-edge connected spanning multisubgraph of G ̅ of minimum cost. The natural linear program (LP) for 2ECM, which coincides with the subtour LP for the Traveling Salesman Problem on the metric closure of G ̅, gives a lower bound on the optimal cost. For instances where this LP is optimized by a half-integral solution x, Carr and Ravi (1998) showed that the integrality gap is at most 4/3: they show that the vector 4/3 x dominates a convex combination of incidence vectors of 2-edge connected spanning multisubgraphs of G ̅. We present a simpler proof of the result due to Carr and Ravi by applying an extension of Lovász’s splitting-off theorem. Our proof naturally leads to a 4/3-approximation algorithm for half-integral instances. Given a half-integral solution x to the LP for 2ECM, we give an O(n²)-time algorithm to obtain a 2-edge connected spanning multisubgraph of G ̅ whose cost is at most 4/3 c^T x.
@InProceedings{boyd_et_al:LIPIcs.APPROX/RANDOM.2020.61,
author = {Boyd, Sylvia and Cheriyan, Joseph and Cummings, Robert and Grout, Logan and Ibrahimpur, Sharat and Szigeti, Zolt\'{a}n and Wang, Lu},
title = {{A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
pages = {61:1--61:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-164-1},
ISSN = {1868-8969},
year = {2020},
volume = {176},
editor = {Byrka, Jaros{\l}aw and Meka, Raghu},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.61},
URN = {urn:nbn:de:0030-drops-126643},
doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.61},
annote = {Keywords: 2-Edge Connectivity, Approximation Algorithms, Subtour LP for TSP}
}