Serverless GEO Labels for the Semantic Sensor Web

Authors Anika Graupner, Daniel Nüst



PDF
Thumbnail PDF

File

LIPIcs.GIScience.2021.I.4.pdf
  • Filesize: 0.61 MB
  • 14 pages

Document Identifiers

Author Details

Anika Graupner
  • Institute for Geoinformatics, University of Münster, Germany
Daniel Nüst
  • Institute for Geoinformatics, University of Münster, Germany

Acknowledgements

This work is based on the thesis "Ein Metadatenlabel für das semantische Sensorweb" [Graupner, 2020]. Contributions (see https://casrai.org/credit/) by AG: data curation, investigation, methodology, software, validation, and writing - review & editing; by DN: conceptualisation, software, supervision, writing - original draft, visualisation. We thank Celeste R. Brennecka from the Scientific Editing Service of the University of Münster for her editorial support and the anonymous reviewers for their very helpful comments. The authors declare no competing or conflict of interests.

Cite As Get BibTex

Anika Graupner and Daniel Nüst. Serverless GEO Labels for the Semantic Sensor Web. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part I. Leibniz International Proceedings in Informatics (LIPIcs), Volume 177, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.GIScience.2021.I.4

Abstract

With the increasing amount of sensor data available online, it is becoming more difficult for users to identify useful datasets. Semantic Web technologies can improve such discovery via meaningful ontologies, but the decision of whether a dataset is suitable remains with the users. Users can be aided in this process through the GEO label, which provides a visual summary of the standardised metadata. However, the GEO label is not yet available for the Semantic Sensor Web. This work presents novel rules for deriving the information for the GEO label’s multiple facets, such as user feedback or quality information, based on the Semantic Sensor Network Ontology and related ontologies. Thereby, this work enhances an existing implementation of the GEO label API to generate labels for resources of the Semantic Sensor Web. Further, the prototype is deployed to serverless cloud infrastructures. We find that serverless GEO label generation is capable of handling two evaluation scenarios for concurrent users and burst generation. Nonetheless, more real-world semantic sensor descriptions, an analysis of requirements for GEO label facets specific to the Semantic Sensor Web, and an integration into large-scale discovery platforms are needed.

Subject Classification

ACM Subject Classification
  • Information systems → Question answering
Keywords
  • GEO label
  • geospatial metadata
  • data discovery
  • Semantic Sensor Web
  • serverless

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Grigori Babitski, Simon Bergweiler, Jörg Hoffmann, Daniel Schön, Christoph Stasch, and Alexander C. Walkowski. Ontology-Based Integration of Sensor Web Services in Disaster Management. In Krzysztof Janowicz, Martin Raubal, and Sergei Levashkin, editors, GeoSpatial Semantics, Lecture Notes in Computer Science, pages 103-121, Berlin, Heidelberg, 2009. Springer. URL: https://doi.org/10.1007/978-3-642-10436-7_7.
  2. Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski, and Philippe Suter. Serverless Computing: Current Trends and Open Problems. In Sanjay Chaudhary, Gaurav Somani, and Rajkumar Buyya, editors, Research Advances in Cloud Computing, pages 1-20. Springer, Singapore, 2017. URL: https://doi.org/10.1007/978-981-10-5026-8_1.
  3. Mike Botts, George Percivall, Carl Reed, and John Davidson. OGCregistered sensor web enablement: Overview and high level architecture. In GeoSensor Networks, pages 175-190. Springer Berlin Heidelberg, 2008. URL: https://doi.org/10.1007/978-3-540-79996-2_10.
  4. Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Technical report, World Wide Web Consortium, January 2014. URL: http://xmlns.com/foaf/spec/.
  5. Jean-Paul Calbimonte, Hoyoung Jeung, Oscar Corcho, and Karl Aberer. Semantic sensor data search in a large-scale federated sensor network. In Proceedings of the 4th international workshop on semantic sensor networks, volume 839 of CEUR Workshop Proceedings, pages 23-38, Bonn, Germany, 2011. URL: http://ceur-ws.org/Vol-839/calbimonte.pdf.
  6. Eliot J. Christian. GEOSS Architecture Principles and the GEOSS Clearinghouse. IEEE Systems Journal, 2(3):333-337, September 2008. Conference Name: IEEE Systems Journal. URL: https://doi.org/10.1109/JSYST.2008.925977.
  7. J. Clark and S. DeRose. XML Path Language (XPath), Version 1.0. W3C Recommendation, World Wide Web Consortium, November 1999. URL: http://www.w3.org/TR/xpath.
  8. Erik Dahlström, Patrick Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack, Doug Schepers, and Jonathan Watt. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C Recommendation, World Wide Web Consortium, 2011. URL: http://www.w3.org/TR/SVG/.
  9. Angelo Di Iorio, Andrea Nuzzolese, Silvio Peroni, David Shotton, and Fabio Vitali. Describing bibliographic references in RDF. In Alexander Garcbackslash'ia Castro, Christoph Lange, Phillip Lord, and Robert Stevens, editors, 4backslashtextsuperscriptth Workshop on Semantic Publishing (SePublica 2014), volume 1155 of CEUR Workshop Proceedings, Anissaras, Greece, May 2014. URL: http://ceur-ws.org/Vol-1155/paper-05.pdf.
  10. Bernadette Farias Lóscio, Eric G. Stephan, and Sumit Purohit. Data on the Web Best Practices: Dataset Usage Vocabulary. Technical report, World Wide Web Consortium, 2016. URL: https://www.w3.org/TR/vocab-duv/.
  11. Anika Graupner. Ein Metadatenlabel für das semantische Sensorweb. Institute for Geofinformatics (ifgi) BSc Thesis, April 2020. URL: https://doi.org/10.31237/osf.io/fs48a.
  12. Armin Haller, Krzysztof Janowicz, Simon J. D. Cox, Maxime Lefrançois, Kerry Taylor, Danh Le Phuoc, Joshua Lieberman, Raúl García-Castro, Rob Atkinson, and Claus Stadler. The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic Web, 10(1):9-32, January 2019. URL: https://doi.org/10.3233/SW-180320.
  13. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Recommendation, World Wide Web Consortium, March 2013. URL: https://www.w3.org/TR/sparql11-query/.
  14. Krzysztof Janowicz, Sven Schade, Arne Bröring, Carsten Keßler, Patrick Maué, and Christoph Stasch. Semantic Enablement for Spatial Data Infrastructures. Transactions in GIS, 14(2):111-129, 2010. URL: https://doi.org/10.1111/j.1467-9671.2010.01186.x.
  15. Hoyoung Jeung, Sofiane Sarni, Ioannis Paparrizos, Saket Sathe, Karl Aberer, Nicholas Dawes, Thanasis G. Papaioannou, and Michael Lehning. Effective Metadata Management in Federated Sensor Networks. In 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pages 107-114, June 2010. URL: https://doi.org/10.1109/SUTC.2010.29.
  16. Simon Jirka, Arne Bröring, and Christoph Stasch. Discovery Mechanisms for the Sensor Web. Sensors, 9(4):2661-2681, April 2009. URL: https://doi.org/10.3390/s90402661.
  17. Timothy Lebo, Satya Sahoo, and Deborah McGuinness. PROV-O: The PROV Ontology. Technical report, World Wide Web Consortium, April 2013. URL: https://www.w3.org/TR/prov-o/.
  18. Victoria Lush. Visualisation of quality information for geospatial and remote sensing data: providing the GIS community with the decision support tools for geospatial dataset quality evaluation. PhD thesis, Aston University, 2015. URL: https://research.aston.ac.uk/en/studentTheses/visualisation-of-quality-information-for-geospatial-and-remote-se.
  19. Victoria Lush, Lucy Bastin, and Jo Lumsden. Developing a geo label: providing the gis community with quality metadata visualisation tools. Proceedings of the 21st GIS Research UK (GISRUK 3013), Liverpool, UK, pages 3-5, 2013. URL: https://www.geos.ed.ac.uk/~gisteac/proceedingsonline/GISRUK2013/gisruk2013_submission_44.pdf.
  20. Jakob Nielsen. Response Times: The 3 Important Limits, January 1993. URL: https://www.nngroup.com/articles/response-times-3-important-limits/.
  21. Jacqueline Nolis. loadtest: HTTP load testing directly from R, 2020. R package version 0.1.2. URL: https://github.com/tmobile/loadtest.
  22. Daniel Nüst and Anika Graupner. nuest/GEO-label-java: Release 0.3.0, February 2020. URL: https://doi.org/10.5281/zenodo.3673870.
  23. Daniel Nüst, Lukas Lohoff, Lasse Einfeldt, Nimrod Gavish, Marlena Götza, Shahzeib Tariq Jaswal, Salman Khalid, Laura Meierkort, Matthias Mohr, Clara Rendel, and Antonia van Eek. Guerrilla Badges for Reproducible Geospatial Data Science. In AGILE Conference 2019 Short Papers, Limassol, Cyprus, 2019. AGILE. URL: https://doi.org/10.31223/osf.io/xtsqh.
  24. Daniel Nüst and Victoria Lush. A GEO label for the Sensor Web. In AGILE Conference 2015 Short Papers, Lisbon, Portugal, 2015. AGILE. URL: https://doi.org/10.31223/osf.io/ka38z.
  25. Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic Sensor Web. IEEE Internet Computing, 12(4):78-83, July 2008 . URL: https://doi.org/10.1109/MIC.2008.87.
  26. Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1):160018, March 2016. URL: https://doi.org/10.1038/sdata.2016.18.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail