We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for the stable orientation problem, which is a special case of the more general locally optimal semi-matching problem. The prior work by Czygrinow et al. (DISC 2012) finds a locally optimal semi-matching in O(Δ⁵) rounds in graphs of maximum degree Δ, which directly implies an algorithm with the same runtime for stable orientations. We improve the runtime to O(Δ⁴) for stable orientations and prove a lower bound of Ω(Δ) rounds.
@InProceedings{brandt_et_al:LIPIcs.DISC.2020.40, author = {Brandt, Sebastian and Keller, Barbara and Rybicki, Joel and Suomela, Jukka and Uitto, Jara}, title = {{Brief Announcement: Efficient Load-Balancing Through Distributed Token Dropping}}, booktitle = {34th International Symposium on Distributed Computing (DISC 2020)}, pages = {40:1--40:3}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-168-9}, ISSN = {1868-8969}, year = {2020}, volume = {179}, editor = {Attiya, Hagit}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.40}, URN = {urn:nbn:de:0030-drops-131182}, doi = {10.4230/LIPIcs.DISC.2020.40}, annote = {Keywords: distributed algorithms, graph problems, semi-matching} }
Feedback for Dagstuhl Publishing