LIPIcs.CSL.2021.35.pdf
- Filesize: 0.66 MB
- 22 pages
In this paper we explore a family of type isomorphisms in System F whose validity corresponds, semantically, to some form of the Yoneda isomorphism from category theory. These isomorphisms hold under theories of equivalence stronger than βη-equivalence, like those induced by parametricity and dinaturality. We show that the Yoneda type isomorphisms yield a rewriting over types, that we call Yoneda reduction, which can be used to eliminate quantifiers from a polymorphic type, replacing them with a combination of monomorphic type constructors. We establish some sufficient conditions under which quantifiers can be fully eliminated from a polymorphic type, and we show some application of these conditions to count the inhabitants of a type and to compute program equivalence in some fragments of System F.
Feedback for Dagstuhl Publishing