LIPIcs.ITCS.2021.13.pdf
- Filesize: 0.51 MB
- 13 pages
A leading proposal for verifying near-term quantum supremacy experiments on noisy random quantum circuits is linear cross-entropy benchmarking. For a quantum circuit C on n qubits and a sample z ∈ {0,1}ⁿ, the benchmark involves computing |⟨z|C|0ⁿ⟩|², i.e. the probability of measuring z from the output distribution of C on the all zeros input. Under a strong conjecture about the classical hardness of estimating output probabilities of quantum circuits, no polynomial-time classical algorithm given C can output a string z such that |⟨z|C|0ⁿ⟩|² is substantially larger than 1/(2ⁿ) (Aaronson and Gunn, 2019). On the other hand, for a random quantum circuit C, sampling z from the output distribution of C achieves |⟨z|C|0ⁿ⟩|² ≈ 2/(2ⁿ) on average (Arute et al., 2019). In analogy with the Tsirelson inequality from quantum nonlocal correlations, we ask: can a polynomial-time quantum algorithm do substantially better than 2/(2ⁿ)? We study this question in the query (or black box) model, where the quantum algorithm is given oracle access to C. We show that, for any ε ≥ 1/poly(n), outputting a sample z such that |⟨z|C|0ⁿ⟩|² ≥ (2 + ε)/2ⁿ on average requires at least Ω((2^{n/4})/poly(n)) queries to C, but not more than O (2^{n/3}) queries to C, if C is either a Haar-random n-qubit unitary, or a canonical state preparation oracle for a Haar-random n-qubit state. We also show that when C samples from the Fourier distribution of a random Boolean function, the naive algorithm that samples from C is the optimal 1-query algorithm for maximizing |⟨z|C|0ⁿ⟩|² on average.
Feedback for Dagstuhl Publishing