A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization

Authors Pranjal Dutta, Nitin Saxena, Thomas Thierauf



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2021.23.pdf
  • Filesize: 0.63 MB
  • 21 pages

Document Identifiers

Author Details

Pranjal Dutta
  • Chennai Mathematical Institute, India
  • CSE, Indian Institute of Technology, Kanpur, India
Nitin Saxena
  • Indian Institute of Technology, Kanpur, India
Thomas Thierauf
  • Hochschule Aalen, Germany

Acknowledgements

P. D. thanks CSE, IIT Kanpur for the hospitality. Thanks to Manindra Agrawal for many useful discussions to optimize the SOS representations; to J. Maurice Rojas for several comments; to Arkadev Chattopadhyay for organizing a TIFR Seminar on this work. T. T. thanks CSE, IIT Kanpur for the hospitality.

Cite As Get BibTex

Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.ITCS.2021.23

Abstract

For a polynomial f, we study the sum of squares representation (SOS), i.e. f = ∑_{i ∈ [s]} c_i f_i² , where c_i are field elements and the f_i’s are polynomials. The size of the representation is the number of monomials that appear across the f_i’s. Its minimum is the support-sum S(f) of f.
For simplicity of exposition, we consider univariate f. A trivial lower bound for the support-sum of, a full-support univariate polynomial, f of degree d is S(f) ≥ d^{0.5}. We show that the existence of an explicit polynomial f with support-sum just slightly larger than the trivial bound, that is, S(f) ≥ d^{0.5+ε(d)}, for a sub-constant function ε(d) > ω(√{log log d/log d}), implies that VP ≠ VNP. The latter is a major open problem in algebraic complexity. A further consequence is that blackbox-PIT is in SUBEXP. Note that a random polynomial fulfills the condition, as there we have S(f) = Θ(d).
We also consider the sum-of-cubes representation (SOC) of polynomials. In a similar way, we show that here, an explicit hard polynomial even implies that blackbox-PIT is in P.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • VP
  • VNP
  • hitting set
  • circuit
  • polynomial
  • sparsity
  • SOS
  • SOC
  • PIT
  • lower bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal. Private Communication, 2020. Google Scholar
  2. Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in algebraic circuits. Proceedings of the National Academy of Sciences, 116(17):8107-8118, 2019. Earlier in Symposium on Theory of Computing, 2018 (STOC'18). URL: https://doi.org/10.1073/pnas.1901272116.
  3. Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In Foundations of Computer Science, 2008. FOCS'08. IEEE 49th Annual IEEE Symposium on, pages 67-75. IEEE, 2008. URL: https://ieeexplore.ieee.org/document/4690941.
  4. Boaz Barak and Ankur Moitra. Noisy tensor completion via the Sum-of-squares Hierarchy. In Conference on Learning Theory, pages 417-445, 2016. URL: http://proceedings.mlr.press/v49/barak16.pdf.
  5. Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7. Springer Science & Business Media, 2013. URL: https://www.springer.com/gp/book/9783540667520.
  6. Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic Complexity Theory, volume 315. Springer Science & Business Media, 2013. URL: https://www.springer.com/gp/book/9783540605829.
  7. Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity and beyond. Now Publishers Inc, 2011. URL: https://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf.
  8. Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Information Processing Letters, 7(4):193-195, 1978. URL: https://www.sciencedirect.com/science/article/abs/pii/0020019078900674.
  9. Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization from algebraic hardness: Treading the borders. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 147-157, 2019. Online version: https://mrinalkr. bitbucket. io/papers/newprg. pdf. URL: https://doi.org/10.1109/FOCS.2019.00018.
  10. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A chasm at depth three. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 578-587. IEEE, 2013. URL: https://epubs.siam.org/doi/pdf/10.1137/140957123.
  11. Joos Heintz and Malte Sieveking. Lower bounds for polynomials with algebraic coefficients. Theoretical Computer Science, 11(3):321-330, 1980. URL: https://www.sciencedirect.com/science/article/pii/0304397580900195.
  12. Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the sum-of-squares problem. Journal of the American Mathematical Society, 24(3):871-898, 2011. URL: https://www.ams.org/journals/jams/2011-24-03/S0894-0347-2011-00694-2/S0894-0347-2011-00694-2.pdf.
  13. Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1-46, 2004. URL: https://doi.org/10.1007/s00037-004-0182-6.
  14. Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer Science, 448:56-65, 2012. URL: https://doi.org/10.1016/j.tcs.2012.03.041.
  15. Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Computational Complexity, 20(1):1-20, 2011. URL: https://doi.org/10.1007/s00037-011-0002-8.
  16. Mrinal Kumar. https://link.springer.com/content/pdf/10.1007/s00037-019-00186-3.pdf. computational complexity, 28(3):409-435, 2019.
  17. Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal Bootstrapping of Hitting Sets for Algebraic Circuits. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 639-646, 2019. URL: https://doi.org/10.5555/3310435.3310475.
  18. Jean B Lasserre. A sum of squares approximation of nonnegative polynomials. SIAM review, 49(4):651-669, 2007. URL: https://epubs.siam.org/doi/abs/10.1137/070693709?journalCode=siread.
  19. Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging applications of algebraic geometry, pages 157-270. Springer, 2009. URL: https://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf.
  20. Meena Mahajan. Algebraic Complexity Classes. In Perspectives in Computational Complexity, pages 51-75. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-05446-9_4.
  21. Meena Mahajan and V Vinay. Determinant: Old algorithms, new insights. SIAM Journal on Discrete Mathematics, 12(4):474-490, 1999. Google Scholar
  22. John C Mason and David C Handscomb. Chebyshev polynomials. CRC press, 2002. URL: https://books.google.co.in/books?id=g1DMBQAAQBAJ.
  23. Ketan D. Mulmuley. The GCT program toward the P vs. NP problem. Commun. ACM, 55(6):98-107, June 2012. URL: https://doi.org/10.1145/2184319.2184341.
  24. Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System Sciences, 49(2):149-167, 1994. URL: https://www.sciencedirect.com/science/article/pii/S0022000005800431.
  25. 𝒪ystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922. Google Scholar
  26. Albrecht Pfister. Hilbert’s seventeenth problem and related problems on definite forms. In Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math, XXVIII.2.AMS, volume 28, pages 483-489, 1976. URL: https://www.ams.org/books/pspum/028.2/.
  27. Srinivasa Ramanujan. On the expression of a number in the form ax² + by² + cz²+ du². In Proc. Cambridge Philos. Soc., volume 19, pages 11-21, 1917. URL: http://ramanujan.sirinudi.org/Volumes/published/ram20.pdf.
  28. Bruce Reznick. Extremal psd forms with few terms. Duke mathematical journal, 45(2):363-374, 1978. URL: https://www.math.ucdavis.edu/~deloera/MISC/LA-BIBLIO/trunk/ReznickBruce/Reznick3.pdf.
  29. Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github survey, 2019. URL: https://github.com/dasarpmar/lowerbounds-survey/releases.
  30. Nitin Saurabh. Algebraic models of computation. MS Thesis, 2012. URL: https://www.imsc.res.in/~nitin/pubs/ms_thesis.pdf.
  31. Nitin Saxena. Progress on Polynomial Identity testing. Bulletin of the EATCS, 99:49-79, 2009. URL: https://www.cse.iitk.ac.in/users/nitin/papers/pit-survey09.pdf.
  32. Nitin Saxena. Progress on Polynomial Identity Testing - II. Perspectives in Computational Complexity, 26:131-146, 2014. URL: https://doi.org/10.1007/978-3-319-05446-9_7.
  33. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, October 1980. URL: https://doi.org/10.1145/322217.322225.
  34. Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trendsregistered in Theoretical Computer Science, 5(3-4):207-388, 2010. URL: https://doi.org/10.1561/0400000039.
  35. Volker Strassen. Polynomials with rational coefficients which are hard to compute. SIAM Journal on Computing, 3(2):128-149, 1974. URL: https://doi.org/10.1137/0203010.
  36. Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Information and Computation, 240:2-11, 2015. URL: https://www.sciencedirect.com/science/article/pii/S0890540114001138.
  37. Leslie G Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM symposium on Theory of computing, pages 249-261. ACM, 1979. URL: https://doi.org/10.1145/800135.804419.
  38. Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of polynomials using few processors. SIAM Journal of Computing, 12(4):641-644, 1983. URL: https://doi.org/10.1137/0212043.
  39. Avi Wigderson. Low-depth arithmetic circuits: technical perspective. Communications of the ACM, 60(6):91-92, 2017. URL: https://cacm.acm.org/magazines/2017/6/217747-technical-perspective-low-depth-arithmetic-circuits/fulltext.
  40. Wikipedia. Binomial coefficient– bounds and asymptotic formulas. URL: https://en.wikipedia.org/wiki/Binomial_coefficient#Bounds_and_asymptotic_formulas.
  41. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, EUROSAM '79, pages 216-226, 1979. URL: https://doi.org/10.1007/3-540-09519-5_73.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail