Inspired by applications on search engines and web servers, we consider a load balancing problem with a general convex objective function. In this problem, we are given a bipartite graph on a set of sources S and a set of workers W and the goal is to distribute the load from each source among its neighboring workers such that the total load of workers are as balanced as possible. We present a new distributed algorithm that works with any symmetric non-decreasing convex function for evaluating the balancedness of the workers' load. Our algorithm computes a nearly optimal allocation of loads in O(log n log² d/ε³) rounds where n is the number of nodes, d is the maximum degree, and ε is the desired precision. If the objective is to minimize the maximum load, we modify the algorithm to obtain a nearly optimal solution in O(log n log d/ε²) rounds. This improves a line of algorithms that require a polynomial number of rounds in n and d and appear to encounter a fundamental barrier that prevents them from obtaining poly-logarithmic runtime [Berenbrink et al., 2005; Berenbrink et al., 2009; Subramanian and Scherson, 1994; Rabani et al., 1998]. In our paper, we introduce a novel primal-dual approach with multiplicative weight updates that allows us to circumvent this barrier. Our algorithm is inspired by [Agrawal et al., 2018] and other distributed algorithms for optimizing linear objectives but introduces several new twists to deal with general convex objectives.
@InProceedings{ahmadian_et_al:LIPIcs.ITCS.2021.79, author = {Ahmadian, Sara and Liu, Allen and Peng, Binghui and Zadimoghaddam, Morteza}, title = {{Distributed Load Balancing: A New Framework and Improved Guarantees}}, booktitle = {12th Innovations in Theoretical Computer Science Conference (ITCS 2021)}, pages = {79:1--79:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-177-1}, ISSN = {1868-8969}, year = {2021}, volume = {185}, editor = {Lee, James R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.79}, URN = {urn:nbn:de:0030-drops-136186}, doi = {10.4230/LIPIcs.ITCS.2021.79}, annote = {Keywords: Load balancing, Distributed algorithms} }
Feedback for Dagstuhl Publishing