LIPIcs.STACS.2021.4.pdf
- Filesize: 0.94 MB
- 20 pages
The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results. 1) A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer 4 ≤ q ≤ √n, our algorithm takes q^{13n+o(n)} time and requires poly(n)⋅ q^{16n/q²} memory. This tradeoff which ranges from enumeration (q = √n) to sieving (q constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter. 2) A quantum algorithm that runs in time 2^{0.9533n+o(n)} and requires 2^{0.5n+o(n)} classical memory and poly(n) qubits. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [Divesh Aggarwal et al., 2015] that has a time and space complexity 2^{n+o(n)}. 3) A classical algorithm for SVP that runs in time 2^{1.741n+o(n)} time and 2^{0.5n+o(n)} space. This improves over an algorithm of [Yanlin Chen et al., 2018] that has the same space complexity. The time complexity of our classical and quantum algorithms are expressed using a quantity related to the kissing number of a lattice. A known upper bound of this quantity is 2^{0.402n}, but in practice for most lattices, it can be much smaller and even 2^o(n). In that case, our classical algorithm runs in time 2^{1.292n} and our quantum algorithm runs in time 2^{0.750n}.
Feedback for Dagstuhl Publishing