LIPIcs.STACS.2021.35.pdf
- Filesize: 0.72 MB
- 15 pages
This work establishes several strong hardness results on the problem of finding an ordering on a string’s alphabet that either minimizes or maximizes the number of factors in that string’s Lyndon factorization. In doing so, we demonstrate that these ordering problems are sufficiently complex to model a wide variety of ordering constraint satisfaction problems (OCSPs). Based on this, we prove that (i) the decision versions of both the minimization and maximization problems are NP-complete, (ii) for both the minimization and maximization problems there does not exist a constant approximation algorithm running in polynomial time under the Unique Game Conjecture and (iii) there does not exist an algorithm to solve the minimization problem in time poly(|T|) ⋅ 2^o(σlog σ) for a string T over an alphabet of size σ under the Exponential Time Hypothesis (essentially the brute force approach of trying every alphabet order is hard to improve significantly).
Feedback for Dagstuhl Publishing