b-Coloring Parameterized by Clique-Width

Authors Lars Jaffke, Paloma T. Lima, Daniel Lokshtanov



PDF
Thumbnail PDF

File

LIPIcs.STACS.2021.43.pdf
  • Filesize: 0.8 MB
  • 15 pages

Document Identifiers

Author Details

Lars Jaffke
  • University of Bergen, Norway
Paloma T. Lima
  • University of Bergen, Norway
Daniel Lokshtanov
  • University of California Santa Barbara, CA, USA

Cite As Get BibTex

Lars Jaffke, Paloma T. Lima, and Daniel Lokshtanov. b-Coloring Parameterized by Clique-Width. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.STACS.2021.43

Abstract

We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial-time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph coloring
Keywords
  • b-Coloring
  • clique-width
  • vertex cover
  • structural parameterization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy coloring & friends, half-graphs, bicliques. In STACS 2020, volume 154 of LIPIcs, pages 58:1-58:18, 2020. Google Scholar
  2. Hans-Jürgen Bandelt and Henry Martin Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory Series B, 41:182-208, 1986. Google Scholar
  3. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy distinguishes treewidth from pathwidth. In ESA 2020, volume 173 of LIPIcs, pages 14:1-14:19, 2020. Google Scholar
  4. J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 2008. Google Scholar
  5. Flavia Bonomo, Guillermo Durán, Frederic Maffray, Javier Marenco, and Mario Valencia-Pabon. On the b-coloring of cographs and P₄-sparse graphs. Graphs and Combinatorics, 25(2):153-167, 2009. Google Scholar
  6. Flavia Bonomo, Oliver Schaudt, Maya Stein, and Mario Valencia-Pabon. b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs. Algorithmica, 73(2):289-305, 2015. Google Scholar
  7. Victor A. Campos, Carlos V. Lima, Nicolas A. Martins, Leonardo Sampaio, Marcio C. Santos, and Ana Silva. The b-chromatic index of graphs. Discrete Mathematics, 338(11):2072-2079, 2015. Google Scholar
  8. Victor A. Campos, Carlos Vinicius G. C. Lima, and Ana Silva. Graphs of girth at least 7 have high b-chromatic number. European Journal of Combinatorics, 48:154-164, 2015. Google Scholar
  9. Victor A. Campos, Cláudia Linhares-Sales, Rudini Sampaio, and Ana Karolinna Maia. Maximization coloring problems on graphs with few P₄. Discrete Applied Mathematics, 164:539-546, 2014. Google Scholar
  10. Victor A. Campos and Ana Silva. Edge-b-coloring trees. Algorithmica, 80(1):104-115, 2018. Google Scholar
  11. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. Google Scholar
  12. Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars. Journal of Computer and System Sciences, 46(2):218-270, 1993. Google Scholar
  13. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1-3):77-114, 2000. Google Scholar
  14. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  15. Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidelberg, fifth edition, 2016. Google Scholar
  16. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013. Google Scholar
  17. Jean E. Dunbar, Sandra M. Hedetniemi, S.T. Hedetniemi, David P. Jacobs, J. Knisely, R.C. Laskar, and Douglas F. Rall. Fall colorings of graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 33:257-274, 2000. Google Scholar
  18. Brice Effantin, Nicolas Gastineau, and Olivier Togni. A characterization of b-chromatic and partial grundy numbers by induced subgraphs. Discrete Mathematics, 339(8):2157-2167, 2016. Google Scholar
  19. Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In WG 2001, pages 117-128, 2001. Google Scholar
  20. Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of clique-width parameterizations. SIAM Journal on Computing, 39(5):1941-1956, 2010. Google Scholar
  21. Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Clique-width III: Hamiltonian cycle and the odd case of graph coloring. ACM Transactions on Algorithms, 15(1):9:1-9:27, 2019. Google Scholar
  22. Wayne Goddard and Michael A. Henning. Independent domination in graphs: A survey and recent results. Discrete Mathematics, 313(7):839-854, 2013. Google Scholar
  23. Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes. International Journal of Foundations of Computer Science, 11(03):423-443, 2000. Google Scholar
  24. Frédéric Havet, Claudia Linhares Sales, and Leonardo Sampaio. b-coloring of tight graphs. Discrete Applied Mathematics, 160(18):2709-2715, 2012. Google Scholar
  25. Frédéric Havet and Leonardo Sampaio. On the Grundy and b-chromatic numbers of a graph. Algorithmica, 65:885-899, 2013. Google Scholar
  26. Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets. Nordic Journal on Computing, 5(2):128-142, 1998. Google Scholar
  27. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer and System Sciences, 62(2):367-375, 2001. Google Scholar
  28. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001. Google Scholar
  29. Robert W. Irving and David F. Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics, 91(1-3):127-141, 1999. Google Scholar
  30. Lars Jaffke and Paloma T. Lima. A complexity dichotomy for critical values of the b-chromatic number of graphs. Theoretical Computer Science, 815:182-196, 2020. Google Scholar
  31. Klaus Jansen. Complexity results for the optimum cost chromatic partition problem, 1997. Google Scholar
  32. Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-chromatic number of graphs. In WG 2002, pages 310-320, 2002. Google Scholar
  33. Renu Laskar and Jeremy Lyle. Fall colouring of bipartite graphs and cartesian products of graphs. Discrete Applied Mathematics, 157(2):330-338, 2009. Google Scholar
  34. Juho Lauri and Christodoulos Mitillos. Complexity of fall coloring for restricted graph classes. In 30th IWOCA, pages 352-364. Springer, 2019. Google Scholar
  35. Jeremy Lyle, Nate Drake, and Renu Laskar. Independent domatic partitioning or fall coloring of strongly chordal graphs. Congressus Numerantium, 172:149-159, 2005. Google Scholar
  36. Johann A. Makowsky and Udi Rotics. On the clique-width of graphs with few P₄’s. International Journal of Foundations of Computer Science, 10(03):329-348, 1999. Google Scholar
  37. Christodoulos Mitillos. Topics in Graph Fall-Coloring. PhD thesis, Illinois Institute of Technology, 2016. Google Scholar
  38. Fahad Panolan, Geevarghese Philip, and Saket Saurabh. On the parameterized complexity of b-chromatic number. Journal of Computer and System Sciences, 84:120-131, 2017. Google Scholar
  39. Michaël Rao. Décompositions de graphes et algorithmes efficaces. PhD thesis, University of Metz, 2006. Google Scholar
  40. Michaël Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics, 308(24):6157-6165, 2008. Google Scholar
  41. Leonardo Sampaio. Algorithmic aspects of graph colourings heuristics. PhD thesis, Université Nice Sophia Antipolis, 2012. Google Scholar
  42. Ana Silva. Graphs with small fall-spectrum. Discrete Applied Mathematics, 254:183-188, 2019. Google Scholar
  43. Ana Shirley Ferreira da Silva. The b-chromatic number of some tree-like graphs. PhD thesis, Université Joseph-Fourier - Grenoble I, 2010. Google Scholar
  44. Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529-550, 1997. Google Scholar
  45. Clara Inés Betancur Velasquez, Flavia Bonomo, and Ivo Koch. On the b-coloring of P₄-tidy graphs. Discrete Applied Mathematics, 159(1):60-68, 2011. Google Scholar
  46. Egon Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics, 54:251-266, 1994. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail