How to Find the Exit from a 3-Dimensional Maze

Author Miki Hermann



PDF
Thumbnail PDF

File

LIPIcs.SEA.2021.21.pdf
  • Filesize: 0.69 MB
  • 12 pages

Document Identifiers

Author Details

Miki Hermann
  • LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Cite As Get BibTex

Miki Hermann. How to Find the Exit from a 3-Dimensional Maze. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 21:1-21:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.SEA.2021.21

Abstract

We present several experimental algorithms for fast computation of variadic polynomials over non-negative integers.

Subject Classification

ACM Subject Classification
  • Theory of computation → Theory and algorithms for application domains
Keywords
  • Young tableaux
  • randomized algorithm
  • probabilistic algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Richard T. Bumby. Sums of four squares. In David V. Chudnovsky, Gregory V. Chudnovsky, and Melvyn B. Nathanson, editors, Number Theory: New York Seminar 1991–1995, pages 1-8. Springer, 1996. Google Scholar
  2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT Press, 2nd edition, 2001. Google Scholar
  3. D. R. Heath-Brown. Searching for solutions of x³ + y³ + z³ = k. In S. David, editor, Séminaire de Théorie des Nombres, Paris, 1989–90, volume 102 of Progress in Mathematics, pages 71-76. Birkhäuser, 1992. Google Scholar
  4. David Hilbert. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem). Mathematische Annalen, 67:81–300, 1909. Google Scholar
  5. Michael D. Hirschhorn and James A. Sellers. Partitions into three triangular numbers. Australasian Journal of Combinatorics, 30:307-318, 2004. Google Scholar
  6. Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006. Google Scholar
  7. Joseph-Louis Lagrange. Démonstration d’un théorème d'arithmétique. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 123-133, 1770. Google Scholar
  8. Paul Pollack and Enrique Treviño. Finding the four squares in Lagrange’s theorem. Integers, 18A:A15, 2018. Google Scholar
  9. Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Communications on Pure and Applied Mathematics, 39:S239-S256, 1986. Google Scholar
  10. Joseph H. Silverman. Taxicabs and sums of two cubes. American Mathematical Monthly, 100(4):331–340, 1993. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail