An Integer Programming Formulation Using Convex Polygons for the Convex Partition Problem

Authors Hadrien Cambazard, Nicolas Catusse



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2021.20.pdf
  • Filesize: 0.68 MB
  • 13 pages

Document Identifiers

Author Details

Hadrien Cambazard
  • Université Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
Nicolas Catusse
  • Université Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France

Cite As Get BibTex

Hadrien Cambazard and Nicolas Catusse. An Integer Programming Formulation Using Convex Polygons for the Convex Partition Problem. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 20:1-20:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.SoCG.2021.20

Abstract

A convex partition of a point set P in the plane is a planar partition of the convex hull of P into empty convex polygons or internal faces whose extreme points belong to P. In a convex partition, the union of the internal faces give the convex hull of P and the interiors of the polygons are pairwise disjoint. Moreover, no polygon is allowed to contain a point of P in its interior. The problem is to find a convex partition with the minimum number of internal faces. The problem has been shown to be NP-hard and was recently used in the CG:SHOP Challenge 2020. We propose a new integer linear programming (IP) formulation that considerably improves over the existing one. It relies on the representation of faces as opposed to segments and points. A number of geometric properties are used to strengthen it. Data sets of 100 points are easily solved to optimality and the lower bounds provided by the model can be computed up to 300 points.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • convex partition
  • integer programming
  • geometric optimization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Allan S. Barboza, Cid C. de Souza, and Pedro J. de Rezende. Minimum convex partition of point sets - benchmark instances and solutions, 2018. URL: https://www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition.
  2. Allan S. Barboza, Cid C. de Souza, and Pedro J. de Rezende. Minimum convex partition of point sets. In Pinar Heggernes, editor, Algorithms and Complexity - 11th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture Notes in Computer Science, pages 25-37. Springer, 2019. Google Scholar
  3. Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Cg challenge 2020 - minimum convex partition, 2020. URL: https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020.
  4. Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing convex partitions for point sets in the plane: The cg:shop challenge 2020, 2020. URL: http://arxiv.org/abs/2004.04207.
  5. David P. Dobkin, Herbert Edelsbrunner, and Mark H. Overmars. Searching for empty convex polygons. Algorithmica, 5(4):561-571, 1990. Google Scholar
  6. T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a constrained point set. Discret. Appl. Math., 109:95-107, 2001. Google Scholar
  7. J. García-López and C.M. Nicolás. Planar point sets with large minimum convex decompositions. Graphs and Combinatorics, 29:1347-1353, 2013. Google Scholar
  8. Nicolas Grelier. Hardness and approximation of minimum convex partition, 2020. URL: http://arxiv.org/abs/1911.07697.
  9. Kiyoshi Hosono. On convex decompositions of a planar point set. Discrete Mathematics, 309(6):1714-1717, 2009. Google Scholar
  10. C. Knauer and A. Spillner. Approximation algorithms for the minimum convex partition problem. In Scandinavian Workshop on Algorithm Theory (SWAT), 2006. Google Scholar
  11. Mario Lomeli-Haro. Minimal convex decompositions, 2012. URL: http://arxiv.org/abs/1207.3468.
  12. Toshinori Sakai and Jorge Urrutia. Convex decompositions of point sets in the plane, 2019. URL: http://arxiv.org/abs/1909.06105.
  13. Jorge Urrutia. Open problem session. In Canadian Conference on Computational Geometry (CCCG), 1998. Google Scholar
  14. Da Wei Zheng, Jack Spalding-Jamieson, and Brandon Zhang. Computing Low-Cost Convex Partitions for Planar Point Sets with Randomized Local Search and Constraint Programming (CG Challenge). In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 83:1-83:7, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail