LIPIcs.SoCG.2021.33.pdf
- Filesize: 0.75 MB
- 17 pages
The greedy t-spanner of a set of points in the plane is an undirected graph constructed by considering pairs of points in order by distance, and connecting a pair by an edge when there does not already exist a path connecting that pair with length at most t times the Euclidean distance. We prove that, for any t > 1, these graphs have at most a linear number of crossings, and more strongly that the intersection graph of edges in a greedy t-spanner has bounded degeneracy. As a consequence, we prove a separator theorem for greedy spanners: any k-vertex subgraph of a greedy spanner can be partitioned into sub-subgraphs of size a constant fraction smaller, by the removal of O(√k) vertices. A recursive separator hierarchy for these graphs can be constructed from their planarizations in linear time, or in near-linear time if the planarization is unknown.
Feedback for Dagstuhl Publishing