Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Fulek, Radoslav; Pelsmajer, Michael J.; Schaefer, Marcus https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-138378
URL:

; ;

Strong Hanani-Tutte for the Torus

pdf-format:


Abstract

If a graph can be drawn on the torus so that every two independent edges cross an even number of times, then the graph can be embedded on the torus.

BibTeX - Entry

@InProceedings{fulek_et_al:LIPIcs.SoCG.2021.38,
  author =	{Fulek, Radoslav and Pelsmajer, Michael J. and Schaefer, Marcus},
  title =	{{Strong Hanani-Tutte for the Torus}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13837},
  URN =		{urn:nbn:de:0030-drops-138378},
  doi =		{10.4230/LIPIcs.SoCG.2021.38},
  annote =	{Keywords: Graph Embedding, Torus, Hanani-Tutte Theorem, Intersection Form}
}

Keywords: Graph Embedding, Torus, Hanani-Tutte Theorem, Intersection Form
Seminar: 37th International Symposium on Computational Geometry (SoCG 2021)
Issue date: 2021
Date of publication: 02.06.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI