LIPIcs.SoCG.2021.40.pdf
- Filesize: 0.73 MB
- 17 pages
Intersection patterns of convex sets in ℝ^d have the remarkable property that for d+1 ≤ k ≤ 𝓁, in any sufficiently large family of convex sets in ℝ^d, if a constant fraction of the k-element subfamilies have nonempty intersection, then a constant fraction of the 𝓁-element subfamilies must also have nonempty intersection. Here, we prove that a similar phenomenon holds for any topological set system ℱ in ℝ^d. Quantitatively, our bounds depend on how complicated the intersection of 𝓁 elements of ℱ can be, as measured by the maximum of the ⌈d/2⌉ first Betti numbers. As an application, we improve the fractional Helly number of set systems with bounded topological complexity due to the third author, from a Ramsey number down to d+1. We also shed some light on a conjecture of Kalai and Meshulam on intersection patterns of sets with bounded homological VC dimension. A key ingredient in our proof is the use of the stair convexity of Bukh, Matoušek and Nivasch to recast a simplicial complex as a homological minor of a cubical complex.
Feedback for Dagstuhl Publishing