LIPIcs.SoCG.2021.53.pdf
- Filesize: 1.68 MB
- 17 pages
We give a general fixed parameter tractable algorithm to compute quantum invariants of links presented by planar diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In particular, we get a O(N^{3/2 cw} poly(n)) ∈ N^O(√n) time algorithm to compute any Reshetikhin-Turaev invariant - derived from a simple Lie algebra 𝔤 - of a link presented by a planar diagram with n crossings and carving-width cw, and whose components are coloured with 𝔤-modules of dimension at most N. For example, this includes the N^{th}-coloured Jones polynomial.
Feedback for Dagstuhl Publishing