LIPIcs.FORC.2021.4.pdf
- Filesize: 0.79 MB
- 21 pages
Decision makers increasingly rely on algorithmic risk scores to determine access to binary treatments including bail, loans, and medical interventions. In these settings, we reconcile two fairness criteria that were previously shown to be in conflict: calibration and error rate equality. In particular, we derive necessary and sufficient conditions for the existence of calibrated scores that yield classifications achieving equal error rates at any given group-blind threshold. We then present an algorithm that searches for the most accurate score subject to both calibration and minimal error rate disparity. Applied to the COMPAS criminal risk assessment tool, we show that our method can eliminate error disparities while maintaining calibration. In a separate application to credit lending, we compare our procedure to the omission of sensitive features and show that it raises both profit and the probability that creditworthy individuals receive loans.
Feedback for Dagstuhl Publishing