LIPIcs.ITP.2021.22.pdf
- Filesize: 1.02 MB
- 17 pages
Combinatorics on Words is a rather young domain encompassing the study of words and formal languages. An archetypal example of a task in Combinatorics on Words is to solve the equation x ⋅ y = y ⋅ x, i.e., to describe words that commute. This contribution contains formalization of three important classical results in Isabelle/HOL. Namely i) the Periodicity Lemma (a.k.a. the theorem of Fine and Wilf), including a construction of a word proving its optimality; ii) the solution of the equation x^a ⋅ y^b = z^c with 2 ≤ a,b,c, known as the Lyndon-Schützenberger Equation; and iii) the Graph Lemma, which yields a generic upper bound on the rank of a solution of a system of equations. The formalization of those results is based on an evolving toolkit of several hundred auxiliary results which provide for smooth reasoning within more complex tasks.
Feedback for Dagstuhl Publishing