 ,                
                            
                    Štěpán Starosta
,                
                            
                    Štěpán Starosta                     
                
                    
             Creative Commons Attribution 4.0 International license
                
    Creative Commons Attribution 4.0 International license
 
    Combinatorics on Words is a rather young domain encompassing the study of words and formal languages. An archetypal example of a task in Combinatorics on Words is to solve the equation x ⋅ y = y ⋅ x, i.e., to describe words that commute. This contribution contains formalization of three important classical results in Isabelle/HOL. Namely i) the Periodicity Lemma (a.k.a. the theorem of Fine and Wilf), including a construction of a word proving its optimality; ii) the solution of the equation x^a ⋅ y^b = z^c with 2 ≤ a,b,c, known as the Lyndon-Schützenberger Equation; and iii) the Graph Lemma, which yields a generic upper bound on the rank of a solution of a system of equations. The formalization of those results is based on an evolving toolkit of several hundred auxiliary results which provide for smooth reasoning within more complex tasks.
@InProceedings{holub_et_al:LIPIcs.ITP.2021.22,
  author =	{Holub, \v{S}t\v{e}p\'{a}n and Starosta, \v{S}t\v{e}p\'{a}n},
  title =	{{Formalization of Basic Combinatorics on Words}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.22},
  URN =		{urn:nbn:de:0030-drops-139177},
  doi =		{10.4230/LIPIcs.ITP.2021.22},
  annote =	{Keywords: combinatorics on words, formalization, Isabelle/HOL}
}
                     archived version
  archived version
    
                            
                                             
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                    