LIPIcs.ICALP.2021.2.pdf
- Filesize: 0.79 MB
- 17 pages
The Constraint Satisfaction Problem (CSP) and a number of problems related to it have seen major advances during the past three decades. In many cases the leading driving force that made these advances possible has been the so-called algebraic approach that uses symmetries of constraint problems and tools from algebra to determine the complexity of problems and design solution algorithms. In this presentation we give a high level overview of the main ideas behind the algebraic approach illustrated by examples ranging from the regular CSP, to counting problems, to optimization and promise problems, to graph isomorphism.
Feedback for Dagstuhl Publishing