Traveling Repairperson, Unrelated Machines, and Other Stories About Average Completion Times

Authors Marcin Bienkowski , Artur Kraska , Hsiang-Hsuan Liu



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2021.28.pdf
  • Filesize: 0.98 MB
  • 20 pages

Document Identifiers

Author Details

Marcin Bienkowski
  • Institute of Computer Science, University of Wrocław, Poland
Artur Kraska
  • Institute of Computer Science, University of Wrocław, Poland
Hsiang-Hsuan Liu
  • Utrecht University, The Netherlands

Cite As Get BibTex

Marcin Bienkowski, Artur Kraska, and Hsiang-Hsuan Liu. Traveling Repairperson, Unrelated Machines, and Other Stories About Average Completion Times. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.ICALP.2021.28

Abstract

We present a unified framework for minimizing average completion time for many seemingly disparate online scheduling problems, such as the traveling repairperson problems (TRP), dial-a-ride problems (DARP), and scheduling on unrelated machines. 
We construct a simple algorithm that handles all these scheduling problems, by computing and later executing auxiliary schedules, each optimizing a certain function on already seen prefix of the input. The optimized function resembles a prize-collecting variant of the original scheduling problem. By a careful analysis of the interplay between these auxiliary schedules, and later employing the resulting inequalities in a factor-revealing linear program, we obtain improved bounds on the competitive ratio for all these scheduling problems. 
In particular, our techniques yield a 4-competitive deterministic algorithm for all previously studied variants of online TRP and DARP, and a 3-competitive one for the scheduling on unrelated machines (also with precedence constraints). This improves over currently best ratios for these problems that are 5.14 and 4, respectively. We also show how to use randomization to further reduce the competitive ratios to 1+2/ln 3 < 2.821 and 1+1/ln 2 < 2.443, respectively. The randomized bounds also substantially improve the current state of the art. Our upper bound for DARP contradicts the lower bound of 3 given by Fink et al. (Inf. Process. Lett. 2009); we pinpoint a flaw in their proof.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
  • Theory of computation → Scheduling algorithms
Keywords
  • traveling repairperson problem
  • dial-a-ride
  • machine scheduling
  • unrelated machines
  • minimizing completion time
  • competitive analysis
  • factor-revealing LP

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger, Claire Kenyon, Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella, Clifford Stein, and Maxim Sviridenko. Approximation schemes for minimizing average weighted completion time with release dates. In Proc. 40th IEEE Symp. on Foundations of Computer Science (FOCS), pages 32-44, 1999. URL: https://doi.org/10.1109/SFFCS.1999.814574.
  2. Sanjeev Arora and George Karakostas. Approximation schemes for minimum latency problems. SIAM Journal on Computing, 32(5):1317-1337, 2003. URL: https://doi.org/10.1137/S0097539701399654.
  3. Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online dial-a-ride problems: Minimizing the completion time. In Proc. 17th Symp. on Theoretical Aspects of Computer Science (STACS), pages 639-650, 2000. URL: https://doi.org/10.1007/s10951-005-6811-3.
  4. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo. Serving requests with on-line routing. In Proc. 4th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages 37-48, 1994. URL: https://doi.org/10.1007/3-540-58218-5_4.
  5. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo. Competitive algorithms for the on-line traveling salesman. In Proc. 4th Int. Workshop on Algorithms and Data Structures (WADS), pages 206-217, 1995. URL: https://doi.org/10.1007/3-540-60220-8_63.
  6. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo. Algorithms for the on-line travelling salesman. Algorithmica, 29(4):560-581, 2001. URL: https://doi.org/10.1007/s004530010071.
  7. Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in the plane. Information and Computation, 106(2):234-252, 1993. Google Scholar
  8. Marcin Bienkowski and Hsiang-Hsuan Liu. An improved online algorithm for the traveling repairperson problem on a line. In Proc. 44th Int. Symp. on Mathematical Foundations of Computer Science (MFCS), pages 6:1-6:12, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.6.
  9. Alexander Birx and Yann Disser. Tight analysis of the smartstart algorithm for online dial-a-ride on the line. SIAM Journal on Discrete Mathematics, 34(2):1409-1443, 2020. URL: https://doi.org/10.1137/19M1268513.
  10. Alexander Birx, Yann Disser, and Kevin Schewior. Improved bounds for open online dial-a-ride on the line. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 21:1-21:22, 2019. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21.
  11. Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight bounds for online TSP on the line. In Proc. 28th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 994-1005, 2017. URL: https://doi.org/10.1137/1.9781611974782.63.
  12. Markus Bläser. Metric TSP. In Encyclopedia of Algorithms, pages 1276-1279. Springer, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_230.
  13. Michiel Blom, Sven Oliver Krumke, Willem de Paepe, and Leen Stougie. The online TSP against fair adversaries. INFORMS Journal on Computing, 13(2):138-148, 2001. URL: https://doi.org/10.1287/ijoc.13.2.138.10517.
  14. Vincenzo Bonifaci and Leen Stougie. Online k-server routing problems. Theory of Computing Systems, 45(3):470-485, 2009. URL: https://doi.org/10.1007/s00224-008-9103-4.
  15. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998. Google Scholar
  16. Soumen Chakrabarti, Cynthia A. Phillips, Andreas S. Schulz, David B. Shmoys, Clifford Stein, and Joel Wein. Improved scheduling algorithms for minsum criteria. In Proc. 23rd Int. Colloq. on Automata, Languages and Programming (ICALP), pages 646-657, 1996. URL: https://doi.org/10.1007/3-540-61440-0_166.
  17. Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees, and minimum latency tours. In Proc. 44th IEEE Symp. on Foundations of Computer Science (FOCS), pages 36-45, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238179.
  18. Pei-Chuan Chen, Erik D. Demaine, Chung-Shou Liao, and Hao-Ting Wei. Waiting is not easy but worth it: the online TSP on the line revisited. Unpublished, 2019. URL: http://arxiv.org/abs/1907.00317.
  19. José R. Correa and Michael R. Wagner. Lp-based online scheduling: from single to parallel machines. Mathematical Programming, 119(1):109-136, 2009. URL: https://doi.org/10.1007/s10107-007-0204-7.
  20. Willem de Paepe, Jan Karel Lenstra, Jirí Sgall, René A. Sitters, and Leen Stougie. Computer-aided complexity classification of dial-a-ride problems. INFORMS Journal on Computing, 16(2):120-132, 2004. URL: https://doi.org/10.1287/ijoc.1030.0052.
  21. Esteban Feuerstein and Leen Stougie. On-line single-server dial-a-ride problems. Theoretical Computer Science, 268(1):91-105, 2001. URL: https://doi.org/10.1016/S0304-3975(00)00261-9.
  22. Irene Fink, Sven Oliver Krumke, and Stephan Westphal. New lower bounds for online k-server routing problems. Information Processing Letters, 109(11):563-567, 2009. URL: https://doi.org/10.1016/j.ipl.2009.01.024.
  23. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. In Discrete Optimization II, volume 5 of Annals of Discrete Mathematics, pages 287-326. Elsevier, 1979. URL: https://doi.org/10.1016/S0167-5060(08)70356-X.
  24. Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Mathematics of Operations Research, 22(3):513-544, 1997. URL: https://doi.org/10.1287/moor.22.3.513.
  25. Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The online dial-a-ride problem under reasonable load. In Proc. 4th Int. Conf. on Algorithms and Complexity (CIAC), pages 125-136, 2000. URL: https://doi.org/10.1007/3-540-46521-9_11.
  26. Han Hoogeveen, Petra Schuurman, and Gerhard J. Woeginger. Non-approximability results for scheduling problems with minsum criteria. INFORMS Journal on Computing, 13(2):157-168, 2001. URL: https://doi.org/10.1287/ijoc.13.2.157.10520.
  27. Dawsen Hwang and Patrick Jaillet. Online scheduling with multi-state machines. Networks, 71(3):209-251, 2018. URL: https://doi.org/10.1002/net.21799.
  28. Patrick Jaillet and Michael R. Wagner. Online routing problems: Value of advanced information as improved competitive ratios. Transp. Sci., 40(2):200-210, 2006. URL: https://doi.org/10.1287/trsc.1060.0147.
  29. Patrick Jaillet and Michael R. Wagner. Generalized online routing: New competitive ratios, resource augmentation, and asymptotic analyses. Oper. Res., 56(3):745-757, 2008. URL: https://doi.org/10.1287/opre.1070.0450.
  30. Vinay A. Jawgal, V. N. Muralidhara, and P. S. Srinivasan. Online travelling salesman problem on a circle. In Proc. 15th Theory and Applications of Models of Computation (TAMC), pages 325-336, 2019. URL: https://doi.org/10.1007/978-3-030-14812-6_20.
  31. Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-Spaccamela, and Leen Stougie. On minimizing the maximum flow time in the online dial-a-ride problem. In Proc. 3rd Workshop on Approximation and Online Algorithms (WAOA), pages 258-269, 2005. URL: https://doi.org/10.1007/11671411_20.
  32. Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, and Leen Stougie. News from the online traveling repairman. Theoretical Computer Science, 295:279-294, 2003. URL: https://doi.org/10.1016/S0304-3975(02)00409-7.
  33. Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, and Leen Stougie. Erratum to "news from the online traveling repairman" [TCS 295 (1-3) (2003) 279-294]. Theoretical Computer Science, 352(1-3):347-348, 2006. URL: https://doi.org/10.1016/j.tcs.2005.11.036.
  34. Sven Oliver Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness helps: An O(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In Proc. 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), pages 200-214, 2002. URL: https://doi.org/10.1007/3-540-45753-4_18.
  35. Maarten Lipmann, Xiwen Lu, Willem de Paepe, René Sitters, and Leen Stougie. On-line dial-a-ride problems under a restricted information model. Algorithmica, 40(4):319-329, 2004. URL: https://doi.org/10.1007/s00453-004-1116-z.
  36. Nicole Megow and Andreas S. Schulz. On-line scheduling to minimize average completion time revisited. Operations Research Letters, 32(5):485-490, 2004. URL: https://doi.org/10.1016/j.orl.2003.11.008.
  37. Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. Journal of the ACM, 23(3):555-565, 1976. URL: https://doi.org/10.1145/321958.321975.
  38. Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized rounding. SIAM Journal on Discrete Mathematics, 15(4):450-469, 2002. URL: https://doi.org/10.1137/S0895480199357078.
  39. Steven S. Seiden. A guessing game and randomized online algorithms. In Proc. 32nd ACM Symp. on Theory of Computing (STOC), pages 592-601, 2000. URL: https://doi.org/10.1145/335305.335385.
  40. René Sitters. The minimum latency problem is NP-hard for weighted trees. In Proc. 9th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO), pages 230-239, 2002. URL: https://doi.org/10.1007/3-540-47867-1_17.
  41. René Sitters. Efficient algorithms for average completion time scheduling. In Proc. 14th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO), pages 411-423, 2010. URL: https://doi.org/10.1007/978-3-642-13036-6_31.
  42. René Sitters. Polynomial time approximation schemes for the traveling repairman and other minimum latency problems. In Proc. 25th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 604-616, 2014. URL: https://doi.org/10.1137/1.9781611973402.46.
  43. René Sitters. Approximability of average completion time scheduling on unrelated machines. Mathematical Programming, 161(1-2):135-158, 2017. URL: https://doi.org/10.1007/s10107-016-1004-8.
  44. Martin Skutella. Semidefinite relaxations for parallel machine scheduling. In Proc. 39th IEEE Symp. on Foundations of Computer Science (FOCS), pages 472-481, 1998. URL: https://doi.org/10.1109/SFCS.1998.743498.
  45. Arjen P. A. Vestjens. On-line Machine Scheduling. PhD thesis, Eindhoven University of Technology, 1997. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail