LIPIcs.ICALP.2021.65.pdf
- Filesize: 0.79 MB
- 19 pages
We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover (Mult-MSSC), a natural and intriguing generalization of the classical List Update problem. In Mult-MSSC, we maintain a sequence of permutations (π⁰, π¹, …, π^T) on n elements, based on a sequence of requests ℛ = (R¹, …, R^T). We aim to minimize the total cost of updating π^{t-1} to π^{t}, quantified by the Kendall tau distance d_{KT}(π^{t-1}, π^t), plus the total cost of covering each request R^t with the current permutation π^t, quantified by the position of the first element of R^t in π^t. Using a reduction from Set Cover, we show that Mult-MSSC does not admit an O(1)-approximation, unless P = NP, and that any o(log n) (resp. o(r)) approximation to Mult-MSSC implies a sublogarithmic (resp. o(r)) approximation to Set Cover (resp. where each element appears at most r times). Our main technical contribution is to show that Mult-MSSC can be approximated in polynomial-time within a factor of O(log² n) in general instances, by randomized rounding, and within a factor of O(r²), if all requests have cardinality at most r, by deterministic rounding.
Feedback for Dagstuhl Publishing