Knapsack and Subset Sum with Small Items

Authors Adam Polak , Lars Rohwedder , Karol Węgrzycki



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2021.106.pdf
  • Filesize: 0.98 MB
  • 19 pages

Document Identifiers

Author Details

Adam Polak
  • EPFL, Lausanne, Switzerland
Lars Rohwedder
  • EPFL, Lausanne, Switzerland
Karol Węgrzycki
  • Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
  • Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Cite As Get BibTex

Adam Polak, Lars Rohwedder, and Karol Węgrzycki. Knapsack and Subset Sum with Small Items. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 106:1-106:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.ICALP.2021.106

Abstract

Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization. Recently there has been a growing interest in understanding the best possible pseudopolynomial running times for these problems with respect to various parameters.
In this paper we focus on the maximum item size s and the maximum item value v. We give algorithms that run in time O(n + s³) and O(n + v³) for the Knapsack problem, and in time Õ(n + s^{5/3}) for the Subset Sum problem.
Our algorithms work for the more general problem variants with multiplicities, where each input item comes with a (binary encoded) multiplicity, which succinctly describes how many times the item appears in the instance. In these variants n denotes the (possibly much smaller) number of distinct items.
Our results follow from combining and optimizing several diverse lines of research, notably proximity arguments for integer programming due to Eisenbrand and Weismantel (TALG 2019), fast structured (min,+)-convolution by Kellerer and Pferschy (J. Comb. Optim. 2004), and additive combinatorics methods originating from Galil and Margalit (SICOMP 1991).

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic programming
Keywords
  • Knapsack
  • Subset Sum
  • Proximity
  • Additive Combinatorics
  • Multiset

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for subset sum and bicriteria path. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 41-57. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.3.
  2. Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987. URL: https://doi.org/10.1007/BF01840359.
  3. Kyriakos Axiotis, Arturs Backurs, Karl Bringmann, Ce Jin, Vasileios Nakos, Christos Tzamos, and Hongxun Wu. Fast and simple modular subset sum. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, pages 57-67. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.6.
  4. Kyriakos Axiotis, Arturs Backurs, Ce Jin, Christos Tzamos, and Hongxun Wu. Fast modular subset sum using linear sketching. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 58-69, 2019. URL: https://doi.org/10.1137/1.9781611975482.4.
  5. Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack and graph algorithms. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 19:1-19:13, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.19.
  6. MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein. Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1269-1282, 2018. URL: https://doi.org/10.1145/3188745.3188876.
  7. Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957. Google Scholar
  8. Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448-461, 1973. URL: https://doi.org/10.1016/S0022-0000(73)80033-9.
  9. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1073-1084. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.69.
  10. Karl Bringmann and Vasileios Nakos. Top-k-convolution and the quest for near-linear output-sensitive subset sum. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 982-995. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384308.
  11. Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1777-1796. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.107.
  12. Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, pages 45-56. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.5.
  13. Timothy M. Chan and Qizheng He. More on change-making and related problems. In 28th Annual European Symposium on Algorithms, ESA 2020, pages 29:1-29:14, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.29.
  14. Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1-41:24, 2016. URL: https://doi.org/10.1145/2925416.
  15. Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. URL: https://doi.org/10.1145/3293465.
  16. Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms, 16(1):5:1-5:14, 2020. URL: https://doi.org/10.1145/3340322.
  17. Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense subset-sum problem. SIAM J. Comput., 20(6):1157-1189, 1991. URL: https://doi.org/10.1137/0220072.
  18. Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant number of item types. J. ACM, 67(6):38:1-38:21, 2020. URL: https://doi.org/10.1145/3421750.
  19. Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, pages 43:1-43:17, 2019. URL: https://doi.org/10.4230/LIPIcs.ITCS.2019.43.
  20. Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for subset sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1757-1776. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.106.
  21. Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm for subset sum. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, pages 17:1-17:6, 2019. URL: https://doi.org/10.4230/OASIcs.SOSA.2019.17.
  22. Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5-11, 2004. URL: https://doi.org/10.1023/B:JOCO.0000021934.29833.6b.
  23. Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-24777-7.
  24. Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum. ACM Trans. Algorithms, 15(3):40:1-40:20, 2019. URL: https://doi.org/10.1145/3329863.
  25. Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity of one-dimensional dynamic programming. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pages 21:1-21:15, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.21.
  26. Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res., 4(4):339-356, 1979. URL: https://doi.org/10.1287/moor.4.4.339.
  27. Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pages 321-330. ACM, 2010. URL: https://doi.org/10.1145/1806689.1806735.
  28. David Pisinger. Linear time algorithms for knapsack problems with bounded weights. J. Algorithms, 33(1):1-14, 1999. URL: https://doi.org/10.1006/jagm.1999.1034.
  29. Krzysztof Potępa. Faster deterministic modular subset sum, 2020. URL: http://arxiv.org/abs/2012.06062.
  30. Jonathan Sorenson. An introduction to prime number sieves. Technical report, University of Wisconsin-Madison Department of Computer Sciences, 1990. Google Scholar
  31. Arie Tamir. New pseudopolynomial complexity bounds for the bounded and other integer knapsack related problems. Oper. Res. Lett., 37(5):303-306, 2009. URL: https://doi.org/10.1016/j.orl.2009.05.003.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail