LIPIcs.ICALP.2021.108.pdf
- Filesize: 0.82 MB
- 16 pages
Given a graph property Φ, we consider the problem EdgeSub(Φ), where the input is a pair of a graph G and a positive integer k, and the task is to decide whether G contains a k-edge subgraph that satisfies Φ. Specifically, we study the parameterized complexity of EdgeSub(Φ) and of its counting problem #EdgeSub(Φ) with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties Φ: the decision problem EdgeSub(Φ) always admits an FPT ("fixed-parameter tractable") algorithm and the counting problem #EdgeSub(Φ) always admits an FPTRAS ("fixed-parameter tractable randomized approximation scheme"). For exact counting, we present an exhaustive and explicit criterion on the property Φ which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for #EdgeSub(Φ) that run in time f(k)⋅ |G|^{o(k/log k)} for any computable function f. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Φ). This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). This approach does not only apply to #EdgeSub(Φ) but also to the more general problem of computing weighted linear combinations of subgraph counts. As a special case of such a linear combination, we introduce a parameterized variant of the Tutte Polynomial T^k_G of a graph G, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, T^k_G(2,1) corresponds to the number of k-forests in the graph G. Our techniques allow us to completely understand the parameterized complexity of computing the evaluation of T^k_G at every pair of rational coordinates (x,y). In particular, our results give a new proof for the #W[1]-hardness of the problem of counting k-forests in a graph.
Feedback for Dagstuhl Publishing